Weaker N-Terminal Interactions for the Protective over the Causative Aβ Peptide Dimer Mutants.

ACS Chem Neurosci

Howard P Isermann Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute, Troy , New York 12180-3590 , United States.

Published: June 2018

Knowing that abeta amyloid peptide (Aβ) dimers are the smallest and most abundant neurotoxic oligomers for Alzheimer's disease (AD), we used molecular simulations with advanced sampling methods (replica-exchange) to characterize and compare interactions between the N-termini (residues 1-16) of wild type (WT-WT) and five mutant dimers under constrained and unconstrained conditions. The number of contacts and distances between the N-termini, and contact maps of their conformational landscape illustrate substantial differences for a single residue change. The N-terminal contacts are significantly diminished for the dimers containing the monomers that protect against (WT-A2T) as compared with those that predispose toward (A2V-A2V) AD and for the control WT-WT dimers. The reduced number of N-terminal contacts not only occurs at or near the second residue mutations but also is distributed through to the 10th residue. These findings provide added support to the accumulating evidence for the "N-terminal hypothesis of AD" and offer an alternate mechanism for the cause of protection from the A2T mutant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.7b00412DOI Listing

Publication Analysis

Top Keywords

n-terminal contacts
8
weaker n-terminal
4
n-terminal interactions
4
interactions protective
4
protective causative
4
causative aβ
4
aβ peptide
4
peptide dimer
4
dimer mutants
4
mutants knowing
4

Similar Publications

Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.

View Article and Find Full Text PDF

Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear.

View Article and Find Full Text PDF

ARGONAUTE (AGO) proteins bind to small non-coding RNAs to form RNA-induced silencing complexes. In the RNA-bound state, AGO is stable while RNA-free AGO turns over rapidly. Molecular features unique to RNA-free AGO that allow its specific recognition and degradation remain unknown.

View Article and Find Full Text PDF

ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.

View Article and Find Full Text PDF

The Ras GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a formidable barrier to viral replication by generating stress granules (SGs) in response to viral infections. Interestingly, viruses, including SARS-CoV-2, have evolved defensive mechanisms to hijack SG proteins like G3BP1 for the dissipation of SGs that lead to the evasion of the host's immune responses. Previous research has demonstrated that the interaction between the NTF2-like domain of G3BP1 (G3BP1) and the intrinsically disordered N-terminal domain (NTD-N) of the N-protein plays a crucial role in regulating viral replication and pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!