A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Light environment in the understory of an Andean cloud forest: canopy structure and climatic seasonality]. | LitMetric

AI Article Synopsis

  • The understory light environment in cloud forests is influenced by factors like species composition, canopy structure, and seasonality.
  • This study focused on the San Eusebio cloud forest in Venezuela, examining light availability during dry and rainy seasons in areas with continuous canopy and variable gaps.
  • Results showed that light levels in the understory remain low, even in gaps, emphasizing the importance of understanding light conditions for tree species regeneration and conservation efforts in these ecosystems.

Article Abstract

The light environment in the understory of cloud forests is highly heterogeneous and determined by species composition, canopy structure, site conditions, and seasonality. This study was carried out at San Eusebio cloud forest, Venezuela (2 300 - 2 500 masl). The impact of canopy structure variations on understory light availability was estimated in the dry (December-February) and rainy (March-November) seasons, in sites under continuous canopy cover and gaps of various sizes. Hemispherical photographs were taken to estimate the percentage of canopy openness, leaf area index, percentages of transmitted direct and diffuse light, and duration and frequency of sunflecks. A light index was calculated from the relative proportions of direct and diffuse light transmitted to the understory. For most variables, there were significant differences between seasons, as well as among different gap sizes and under closed canopy. The light index was low (0.25 to 26 of a maximum = 100), even for the largest gaps, indicating a highly shaded light environment, especially beneath closed canopy in the rainy season. Patterns and interactions among factors were analyzed (gaps vs. continuous canopy, gap sizes, location within the gaps, and seasonality) with a mixed effects repeated measures Anova design. Results showed that the amount of light reaching the understory is low in both gaps and closed canopy. However, small but significant differences in light availability existed for both seasonality and magnitude of the perturbations. These differences could contribute to explain the dynamics of tree species regeneration in this forest. The knowledge of the factors conditioning light availability in the understory where tree regeneration begins is crucial in cloud forests because of energetic limitations in this ecosystem, and might be essential for future restoration and conservation plans concerning the preservation of the diversity and integrity of these forests.

Download full-text PDF

Source

Publication Analysis

Top Keywords

canopy structure
12
light availability
12
closed canopy
12
light
10
canopy
9
environment understory
8
cloud forest
8
light environment
8
cloud forests
8
continuous canopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!