Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Through IR microimaging the spatially and temporally resolved development of the CO concentration in a ZIF-8@6FDA-DAM mixed matrix membrane (MMM) was visualized during transient adsorption. By recording the evolution of the CO concentration, it is observed that the CO molecules propagate from the ZIF-8 filler, which acts as a transport "highway", towards the surrounding polymer. A high-CO -concentration layer is formed at the MOF/polymer interface, which becomes more pronounced at higher CO gas pressures. A microscopic explanation of the origins of this phenomenon is suggested by means of molecular modeling. By applying a computational methodology combining quantum and force-field based calculations, the formation of microvoids at the MOF/polymer interface is predicted. Grand canonical Monte Carlo simulations further demonstrate that CO tends to preferentially reside in these microvoids, which is expected to facilitate CO accumulation at the interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201713160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!