Superhydrophobic Blood-Repellent Surfaces.

Adv Mater

Department of Applied Physics, School of Science, Aalto University, Puumiehenkuja 2, 02150, Espoo, Finland.

Published: June 2018

Superhydrophobic surfaces repel water and, in some cases, other liquids as well. The repellency is caused by topographical features at the nano-/microscale and low surface energy. Blood is a challenging liquid to repel due to its high propensity for activation of intrinsic hemostatic mechanisms, induction of coagulation, and platelet activation upon contact with foreign surfaces. Imbalanced activation of coagulation drives thrombogenesis or formation of blood clots that can occlude the blood flow either on-site or further downstream as emboli, exposing tissues to ischemia and infarction. Blood-repellent superhydrophobic surfaces aim toward reducing the thrombogenicity of surfaces of blood-contacting devices and implants. Several mechanisms that lead to blood repellency are proposed, focusing mainly on platelet antiadhesion. Structured surfaces can: (i) reduce the effective area exposed to platelets, (ii) reduce the adhesion area available to individual platelets, (iii) cause hydrodynamic effects that reduce platelet adhesion, and (iv) reduce or alter protein adsorption in a way that is not conducive to thrombus formation. These mechanisms benefit from the superhydrophobic Cassie state, in which a thin layer of air is trapped between the solid surface and the liquid. The connections between water- and blood repellency are discussed and several recent examples of blood-repellent superhydrophobic surfaces are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201705104DOI Listing

Publication Analysis

Top Keywords

superhydrophobic surfaces
12
blood-repellent superhydrophobic
8
blood repellency
8
surfaces
7
superhydrophobic
5
blood
5
superhydrophobic blood-repellent
4
blood-repellent surfaces
4
surfaces superhydrophobic
4
surfaces repel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!