Calcium imaging provides an indirect observation of the underlying neural dynamics and enables the functional analysis of neuronal populations. However, the recorded fluorescence traces are temporally smeared, thus making the reconstruction of exact spiking activity challenging. Most of the established methods to tackle this issue are limited in dealing with issues such as the variability in the kinetics of fluorescence transients, fast processing of long-term data, high firing rates, and measurement noise. We propose a novel, heuristic reconstruction method to overcome these limitations. By using both synthetic and experimental data, we demonstrate the four main features of this method: 1) it accurately reconstructs both isolated spikes and within-burst spikes, and the spike count per fluorescence transient, from a given noisy fluorescence trace; 2) it performs the reconstruction of a trace extracted from 1,000,000 frames in less than 2 s; 3) it adapts to transients with different rise and decay kinetics or amplitudes, both within and across single neurons; and 4) it has only one key parameter, which we will show can be set in a nearly automatic way to an approximately optimal value. Furthermore, we demonstrate the ability of the method to effectively correct for fast and rather complex, slowly varying drifts as frequently observed in in vivo data. NEW & NOTEWORTHY Reconstruction of spiking activities from calcium imaging data remains challenging. Most of the established reconstruction methods not only have limitations in adapting to systematic variations in the data and fast processing of large amounts of data, but their results also depend on the user's experience. To overcome these limitations, we present a novel, heuristic model-free-type method that enables an ultra-fast, accurate, near-automatic reconstruction from data recorded under a wide range of experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00934.2017DOI Listing

Publication Analysis

Top Keywords

calcium imaging
12
ultra-fast accurate
8
reconstruction spiking
8
spiking activity
8
data
8
imaging data
8
challenging established
8
fast processing
8
novel heuristic
8
overcome limitations
8

Similar Publications

This consensus on primary hyperparathyroidism, drawn up under the aegises of the French Society of Endocrinology (SFE), French Association of Endocrine Surgery (AFCE) and French Society of Nuclear Medicine (SFMN), provides an update on positive, etiological and differential diagnosis and treatment in primary hyperparathyroidism. These recommendations take account of recent increase in the prevalence of primary hyperparathyroidism, due to 1. more systematic routine measurement of blood calcium and improved quality of parathyroid hormone assays, 2.

View Article and Find Full Text PDF

Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.

View Article and Find Full Text PDF

Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.

View Article and Find Full Text PDF

Background: Aneurysmal bone cysts (ABCs) are benign, blood-filled neoplasms causing bone destruction, often requiring resection. However, challenges arise, especially at the cranio-cervical junction, where proximity to critical structures limits removal. Non-surgical options include selective arterial embolization (SAE) as main treatment, while Denosumab and centrifugated bone marrow emerge as experimental alternatives.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!