Here, the anti-malarial activity of two gold(i) phosphine compounds auranofin and [Au(d2pype)]Cl (where d2pype is 1,2-bis(di-2-pyridylphosphino)ethane), were examined to inform their use as potential drugs and malaria parasite-attenuating agents. In vitro, the gold compounds were active against Plasmodium falciparum and P. knowlesi as well as the rodent parasite P. chabaudi AS. Attenuation of the parasite was observed when mice were inoculated with P. chabaudi AS infected red blood cells treated in vitro with [Au(d2pype)]Cl (1 or 2 μM) or auranofin (2 μM) for 2 or 3 h. Quantitative PCR data showed persistence of low levels of parasite DNA up to 8 days post inoculation. In some experiments, there was microscopically detectable parastiemia following inoculation which subsequently cleared. Following 1 or 3 doses of gold compound-treated parasitized red blood cells (pRBCs), protection was not observed when these mice were subsequently challenged with wild type P. chabaudi AS. In experiments where microscopically detectable parasites were observed following in vivo inoculation, mice were subsequently fully protected against a challenge infection with wildtype parasites. In an infect-and-treat rodent model, the gold compounds were unable to inhibit P. chabaudi AS growth in vivo when administered orally. Gold compounds act via the inhibition of antioxidant systems which are critical in the pathogen's survival from attack by the host oxidants. In vitro, they directly inhibit the parasite thioredoxin reductase, hence the observed suppressive activity. On the other hand, in vivo, the gold compounds may not be readily available for absorption and thus pharmacokinetic studies will be required to further examine drug bioavailability following administration. With structural differences in redox mechanisms of P. falciparum and the human host being identified, gold compounds can be better designed to more efficiently target and selectively inhibit the parasite.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7mt00311kDOI Listing

Publication Analysis

Top Keywords

gold compounds
20
goldi phosphine
8
phosphine compounds
8
observed mice
8
red blood
8
blood cells
8
experiments microscopically
8
microscopically detectable
8
mice subsequently
8
inhibit parasite
8

Similar Publications

Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.

View Article and Find Full Text PDF

Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.

View Article and Find Full Text PDF

Bipolar disorder is a chronic disease that imposes a lifelong burden on those that suffer from it. Lithium is still considered both gold standard treatment and first-line maintenance treatment, and access to treatment with lithium is paramount to improving patient outcomes. However, access to adequate treatment is not only contingent on symptom recognition, accurate diagnosis, and individualization of treatment, but also affected by racial and ethnic disparities at each stage of patient experience.

View Article and Find Full Text PDF

STOUT V2.0: SMILES to IUPAC name conversion using transformer models.

J Cheminform

December 2024

Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.

Naming chemical compounds systematically is a complex task governed by a set of rules established by the International Union of Pure and Applied Chemistry (IUPAC). These rules are universal and widely accepted by chemists worldwide, but their complexity makes it challenging for individuals to consistently apply them accurately. A translation method can be employed to address this challenge.

View Article and Find Full Text PDF

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!