Atomic-defect engineering in thin membranes provides opportunities for ionic and molecular filtration and analysis. While molecular-dynamics (MD) calculations have been used to model conductance through atomic vacancies, corresponding experiments are lacking. We create sub-nanometer vacancies in suspended single-layer molybdenum disulfide (MoS) via Ga ion irradiation, producing membranes containing ∼300 to 1200 pores with average and maximum diameters of ∼0.5 and ∼1 nm, respectively. Vacancies exhibit missing Mo and S atoms, as shown by aberration-corrected scanning transmission electron microscopy (AC-STEM). The longitudinal acoustic band and defect-related photoluminescence were observed in Raman and photoluminescence spectroscopy, respectively. As the irradiation dose is increased, the median vacancy area remains roughly constant, while the number of vacancies (pores) increases. Ionic current versus voltage is nonlinear and conductance is comparable to that of ∼1 nm diameter single MoS pores, proving that the smaller pores in the distribution display negligible conductance. Consistently, MD simulations show that pores with diameters <0.6 nm are almost impermeable to ionic flow. Atomic pore structure and geometry, studied by AC-STEM, are critical in the sub-nanometer regime in which the pores are not circular and the diameter is not well-defined. This study lays the foundation for future experiments to probe transport in large distributions of angstrom-size pores.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b04526DOI Listing

Publication Analysis

Top Keywords

pores
6
angstrom-size defect
4
defect creation
4
creation ionic
4
ionic transport
4
transport pores
4
pores single-layer
4
single-layer mos
4
mos atomic-defect
4
atomic-defect engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!