Background: Kell is a glycoprotein expressed on red blood cells (RBCs). Its K and k variants contain either Met (K antigen) or Thr (k antigen) at Position 193, respectively. Development of anti-K after K-mismatched antigen exposure via blood transfusions or pregnancy can destroy RBCs, leading to hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. The immunogenicity of overlapping 15-mer Kell peptides with M193 or T193 at every possible position was investigated previously. Interestingly, Peptide W179 to M193, with the polymorphic M193T residue at the peptide's C-terminus, was the most effective at stimulating CD4 T cells from a series of K-immunized women.
Study Design And Methods: This study investigates the basis for HLA restriction of anti-K immune responses. Major histocompatibility complex Class II (MHCII)-binding prediction algorithms and quantitative peptide-MHCII-binding assays were employed to determine the binding registers; anchor residues; and affinities of wild-type, truncated, and sequence-modified K and k peptides. Predictions were generated using Immune Epitope Database and ProPred algorithms. Competitive peptide-MHCII-binding assays utilized 12 recombinant HLA-DR proteins, K and k peptides, and high-affinity MHCII-restricted reference peptides.
Results: The peptide-MHCII-binding assays identified a unique K peptide-binding register (W179-S187) restricted to HLA-DRB1*11:01, in addition to partially overlapping binding registers that included the K/k M193T polymorphic site and that bound promiscuously to multiple HLA-DR proteins.
Conclusion: Three partially overlapping MHCII-binding motifs for HLA-DRB1*11:01 result in high-avidity K-peptide binding, which may contribute to HLA-DR11-restricted immunogenicity associated with the K allele.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.14525 | DOI Listing |
Front Immunol
March 2023
Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
Background: Almost half of severe hemophilia A (HA) is caused by an intron 22 inversion mutation (Int22Inv), which disrupts the 26-exon gene. Inverted mRNA exons 1-22 are transcribed, while mRNA, containing exons 23-26, is transcribed from a promoter within intron 22. Neither FVIII activity nor FVIII antigen (cross-reacting material, CRM) are detectable in plasma of patients with an intron-22 inversion.
View Article and Find Full Text PDFBiochemistry
August 2022
Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States.
Antigen processing in the class II MHC pathway depends on conventional proteolytic enzymes, potentially acting on antigens in native-like conformational states. CD4+ epitope dominance arises from a competition among antigen folding, proteolysis, and MHCII binding. Protease-sensitive sites, linear antibody epitopes, and CD4+ T-cell epitopes were mapped in plague vaccine candidate F1-V to evaluate the various contributions to CD4+ epitope dominance.
View Article and Find Full Text PDFAIChE J
March 2020
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.
Despite promising developments in computational tools, peptide-class II MHC (MHCII) binding predictors continue to lag behind their peptide-class I MHC counterparts. Consequently, peptide-MHCII binding is often evaluated experimentally using competitive binding assays, which tend to sacrifice throughput for quantitative binding detail. Here, we developed a high-throughput semiquantitative peptide-MHCII screening strategy termed microsphere-assisted peptide screening (MAPS) that aims to balance the accuracy of competitive binding assays with the throughput of computational tools.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Universidad Santo Tomás, Bogotá, Colombia. Electronic address:
This work describes a methodology for developing a minimal, subunit-based, multi-epitope, multi-stage, chemically-synthesised, anti-Plasmodium falciparum malaria vaccine. Some modified high activity binding peptides (mHABPs) derived from functionally relevant P. falciparum MSP, RH5 and AMA-1 conserved amino acid regions (cHABPs) for parasite binding to and invasion of red blood cells (RBC) were selected.
View Article and Find Full Text PDFTransfusion
May 2018
Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
Background: Kell is a glycoprotein expressed on red blood cells (RBCs). Its K and k variants contain either Met (K antigen) or Thr (k antigen) at Position 193, respectively. Development of anti-K after K-mismatched antigen exposure via blood transfusions or pregnancy can destroy RBCs, leading to hemolytic transfusion reactions and hemolytic disease of the fetus and newborn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!