Heavy atom nanoparticles have high X-ray absorption capacity and near infrared (NIR) photothermal conversion efficiency, which could be used as radio-sensitizers. We hypothesized that concave PtCu octopod nanoframes (OPCNs) would be an efficient nanoplatform for synergistic radio-photothermal tumor ablation. In this study, we newly exploited a folic acid-receptor (FR) mediated photothermal radiotherapy nanoagent base on OPCNs. OPCNs were synthesized with a hydrothermal method and then modified with polyethylene glycol (PEG) and folic acid (FA). A series of physical and chemical characterizations, cytotoxicity, targeting potential, endocytosis mechanism, biodistribution, systematic toxicological evaluation, pharmacokinetics, applications of OPCNs-PEG-FA for and infrared thermal imaging (ITI)/photoacoustic imaging (PAI) dual-modal imaging and synergistic photothermal radiotherapy against tumor were carried out. The OPCNs-PEG-FA demonstrated good biocompatibility, strong NIR absorption and X-ray radio-sensitization, which enabling it to track and visualize tumor via ITI/PAI dual-modal imaging. Moreover, the as-synthesized OPCNs-PEG-FA exhibited remarkable photothermal therapy (PTT) and radiotherapy (RT) synergistic tumor inhibition when treated with NIR laser and X-ray. A novel multifunctional theranostic nanoplatform based on OPCNs was designed and developed for dual-modal image-guided synergistic tumor photothermal radiotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817109 | PMC |
http://dx.doi.org/10.7150/thno.22557 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
Purpose: Enhancing therapeutic effectiveness is crucial for translating anticancer nanomedicines from laboratory to clinical settings. In this study, we have developed radioactive rhenium oxide nanoparticles encapsulated in human serum albumin ([Re]ReO-HSA NPs) for concurrent radiotherapy (RT) and photothermal therapy (PTT), aiming to optimize treatment outcomes.
Methods: [Re]ReO-HSA NPs were synthesized by a controlled reduction of ReO in HSA medium and extensively characterized.
Nanomaterials (Basel)
January 2025
Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China.
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation and promoting robust antitumor responses. By improving antigen presentation and localizing immune activation within the tumor microenvironment, nano-oncologic vaccines can significantly increase the efficacy of cancer immunotherapy, particularly when combined with other treatment modalities.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
Glioma is the most common primary malignant brain tumor with a poor survival rate. It is characterized by diffuse and invasive growth and heterogeneity, which limits tumor identification and complete resection. Therefore, the precise detection and postoperative adjuvant therapy of gliomas have become increasingly important and urgent.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Glioblastoma multiforme (GBM) is a highly invasive and fatal brain tumor with a grim prognosis, where current treatment modalities, including postoperative radiotherapy and temozolomide chemotherapy, yield a median survival of only 15 months. The challenges of tumor heterogeneity, drug resistance, and the blood-brain barrier necessitate innovative therapeutic approaches. This study introduces a strategy employing biomimetic magnetic nanorobots encapsulated with hybrid membranes derived from platelets and M1 macrophages to enhance blood-brain barrier penetration and target GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!