In recent years, several tools have become available for improved gene-targeting (GT) in plants. DNA breaks at specific sites activate local DNA repair and recombination, including recombination with ectopic sequences leading to GT. Large-scale transformation with the repair template can be avoided by pre-insertion of the repair template in the genome and liberation by sequence-specific nucleases (in planta GT procedure). Here, we tested whether release of the repair template was required for GT. Plants were transformed with constructs encoding a CRISPR/Cas nuclease with a recognition site in the endogenous PPO gene and a repair template harboring a 5' truncated PPO gene with two amino acid substitutions rendering the enzyme insensitive to the herbicide butafenacil. Selection resulted in so-called true GT events, repaired via homologous recombination at both ends of the gene and transmitted to the next generation. As the template was surrounded by geminiviral LIR sequences, we also tested whether replication of the template could be induced by crossing-in an integrated geminivirus REP gene. However, we could not find evidence for repair template replication by REP and we obtained similar numbers of GT events in these plants. Thus, GT is possible without any further processing of the pre-inserted repair template.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820285 | PMC |
http://dx.doi.org/10.1038/s41598-018-21697-z | DOI Listing |
J Nanobiotechnology
January 2025
Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.
Biomaterials
December 2024
Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China. Electronic address:
Radiation therapy is a primary modality for cancer treatment; however, it often leads to various degrees of skin injuries, ranging from mild rashes to severe ulcerations, for which no effective treatments are currently available. In this study, a multifunctional microsphere (PC@CuS-ALG) was synthesized by encapsulating phycocyanin-templated copper sulfide nanoparticles (PC@CuS) within alginate (ALG) using microfluidic technology. Phycocyanin, a natural protein derived from microalgae, shows abilities to scavenge reactive oxygen species, repair radiation-induced damage to skin cells, and ameliorate macrophage-related inflammatory responses.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Nishtar Medical University, Multan, PAK.
In recent years, there has been a notable increase in the use of robotic technology in medical surgery, especially in heart surgery. Many advancements in surgery have been made possible by the development of these robotic devices, such as the da Vinci surgical system (Intuitive Surgical, Sunnyvale, California, United States). These advancements include improved ergonomics, three-dimensional (3D) imaging, and increased dexterity.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Malaria Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
The malaria parasite needs nearly half of its genes to propagate normally within red blood cells. Inducible ways to interfere with gene expression like the DiCre-lox system are necessary to study the function of these essential genes. However, existing DiCre-lox strategies are not well-suited to be deployed at scale to study several genes simultaneously.
View Article and Find Full Text PDFBiomater Sci
December 2024
Sichuan University, Chengdu, Sichuan, China.
In bone tissue engineering, manufacturing bone tissue constructs that closely replicate physiological features for regenerative repair remains a significant challenge. In recent years, the advent of indirect 3D printing technology has overcome the stringent material demands, confined resolution, and structural control challenges inherent to direct 3D printing. By utilizing sacrificial templates, the natural structures and physiological functions of bone tissues can be precisely duplicated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!