AI Article Synopsis

Article Abstract

Membrane trafficking plays pivotal roles in various cellular activities and higher-order functions of eukaryotes and requires tethering factors to mediate contact between transport intermediates and target membranes. Two evolutionarily conserved tethering complexes, homotypic fusion and protein sorting (HOPS) and class C core vacuole/endosome tethering (CORVET), are known to act in endosomal/vacuolar transport in yeast and animals. Both complexes share a core subcomplex consisting of Vps11, Vps18, Vps16, and Vps33, and in addition to this core, HOPS contains Vps39 and Vps41, whereas CORVET contains Vps3 and Vps8. HOPS and CORVET subunits are also conserved in the model plant Arabidopsis. However, vacuolar trafficking in plants occurs through multiple unique transport pathways, and how these conserved tethering complexes mediate endosomal/vacuolar transport in plants has remained elusive. In this study, we investigated the functions of VPS18, VPS3, and VPS39, which are core complex, CORVET-specific, and HOPS-specific subunits, respectively. Impairment of these tethering proteins resulted in embryonic lethality, distinctly altering vacuolar morphology and perturbing transport of a vacuolar membrane protein. CORVET interacted with canonical RAB5 and a plant-specific R-soluble NSF attachment protein receptor (SNARE), VAMP727, which mediates fusion between endosomes and the vacuole, whereas HOPS interacted with RAB7 and another R-SNARE, VAMP713, which likely mediates homotypic vacuolar fusion. These results indicate that CORVET and HOPS act in distinct vacuolar trafficking pathways in plant cells, unlike those of nonplant systems that involve sequential action of these tethering complexes during vacuolar/lysosomal trafficking. These results highlight a unique diversification of vacuolar/lysosomal transport that arose during plant evolution, using evolutionarily conserved tethering components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877921PMC
http://dx.doi.org/10.1073/pnas.1717839115DOI Listing

Publication Analysis

Top Keywords

tethering complexes
16
conserved tethering
12
tethering
8
evolutionarily conserved
8
endosomal/vacuolar transport
8
vacuolar trafficking
8
complexes
6
transport
6
hops
5
corvet
5

Similar Publications

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.

View Article and Find Full Text PDF

Introduction: Subsea applications recently received increasing attention due to the global expansion of offshore energy, seabed infrastructure, and maritime activities; complex inspection, maintenance, and repair tasks in this domain are regularly solved with pilot-controlled, tethered remote-operated vehicles to reduce the use of human divers. However, collecting and precisely labeling submerged data is challenging due to uncontrollable and harsh environmental factors. As an alternative, synthetic environments offer cost-effective, controlled alternatives to real-world operations, with access to detailed ground-truth data.

View Article and Find Full Text PDF

Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.

View Article and Find Full Text PDF

During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!