Kelch Mutations in Plasmodium falciparum Protein K13 Do Not Modulate Dormancy after Artemisinin Exposure and Sorbitol Selection .

Antimicrob Agents Chemother

Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA

Published: May 2018

Some Kelch mutations of the K13 protein confer increased survival to dihydroartemisinin (DHA)-treated ring-stage parasites. Here, we asked if K13 mutations affect a dormancy phenotype allowing parasites to survive DHA exposure and then sorbitol selection. Although recrudescence from dormancy differed between two distinct parasite lines, it was similar for isogenic lines carrying single-site substitutions in K13. Therefore, K13 mutations do not alter the DHA-sorbitol combined dormancy phenotype; rather, traits from other loci likely determine this phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923101PMC
http://dx.doi.org/10.1128/AAC.02256-17DOI Listing

Publication Analysis

Top Keywords

kelch mutations
8
exposure sorbitol
8
sorbitol selection
8
k13 mutations
8
dormancy phenotype
8
k13
5
mutations plasmodium
4
plasmodium falciparum
4
falciparum protein
4
protein k13
4

Similar Publications

Concurrent mutations in tumor protein p53 (TP53) or Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-pathway components are linked to poor outcomes in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), but the impact of triple mutations remains unclear. We report a case of EGFR-, TP53-, and Cullin 3 (CUL3)-mutant NSCLC in a 43-year-old woman with widespread metastases at diagnosis, including those in the contralateral lung, distant lymph nodes, pericardium, liver, bones, left adrenal gland, and brain. She received osimertinib as first-line therapy, but pericardial effusion and liver metastases progressed rapidly over 3 months, and she was switched to carboplatin and pemetrexed.

View Article and Find Full Text PDF

KLHL24 associated cardiomyopathy: Gene function to clinical management.

Gene

December 2024

Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China. Electronic address:

Background: KLHL24 (Kelch-like protein 24) is a significant component of the ubiquitin-proteasome system (UPS), involved in regulating protein turnover through targeted ubiquitination and degradation. Germline mutations in KLHL24 gene have been known to cause Epidermolysis Bullosa Simplex characterized by skin fragility but has recently been found to cause Cardiomyopathy.

Main Body: Various cardiomyopathies, including hypertrophic cardiomyopathy and dilated cardiomyopathy, leading to abnormal protein degradation and affecting the stability and function of essential cardiac proteins which finally results into structural and functional abnormalities in cardiac muscle.

View Article and Find Full Text PDF

Clinical perspectives on the value of testing for and mutations in advanced NSCLC.

Front Oncol

December 2024

Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.

Standard first-line therapy for patients with metastatic non-small cell lung cancer (mNSCLC) without identified actionable mutations consists of regimens comprising immune checkpoint inhibitors (ICIs), alone or in combination with platinum-based chemotherapy (CTx). However, approximately 20-30% of patients with mNSCLC (including some patients with high tumor programmed cell death ligand-1 expression) display primary resistance to ICIs, either alone or in combination with CTx. Mutations in tumor suppressor genes (), and () often detected in patients with mutations, are associated with an aggressive disease phenotype and resistance to standard ICI regimens.

View Article and Find Full Text PDF

Familial Hyperkalemic Hypertension.

Compr Physiol

December 2024

Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA.

The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K secretion by downstream nephron segments.

View Article and Find Full Text PDF

A frameshift mutation in resolves the growth versus defense dilemma in rice.

Proc Natl Acad Sci U S A

December 2024

State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

CRISPR-Cas9 genome editing systems have revolutionized plant gene functional studies by enabling the targeted introduction of insertion-deletions (INDELs) via the nonhomologous end-joining (NHEJ) pathway. Frameshift-inducing INDELs can introduce a premature termination codon and, in other instances, can lead to the appearance of new proteins. Here, we found that mutations in the rice jasmonate (JA) signaling gene by CRISPR-Cas9-based genome editing did not affect canonical JA signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!