This study aimed at developing a portable multi-channel turbidity system (21 cm in length, 15.5 cm in width and 11.5 cm in depth) by real-time loop-mediated isothermal amplification (LAMP) method for rapid detection of pathogens. The developed system herein includes temperature control unit, photoelectric detection unit, turbidity calibration unit, power management unit, human machine unit, communication unit and ARM-based microcontroller. The coefficient of variation for eight channels is less than 0.25% in noise analysis. Legionella bacteria (LEG) and H7 subtype virus (H7) were successively detected by the designed and developed system within 60 minutes. Moreover, its specificity for LEG is satisfactory and its sensitivity for H7 is 10 copies/mL. Besides, this system for point-of-care diagnosis allows a rapid, small size, low cost, and automatic detection with the characteristics of high-efficiency, excellent stability and high uniformity.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2018.2524DOI Listing

Publication Analysis

Top Keywords

portable multi-channel
8
multi-channel turbidity
8
turbidity system
8
rapid detection
8
detection pathogens
8
loop-mediated isothermal
8
isothermal amplification
8
developed system
8
unit
6
system
5

Similar Publications

Robust and Versatile Biodegradable Unclonable Anti-Counterfeiting Labels with Multi-Mode Optical Encoding Using Protein-Mediated Luminescent Calcite Signatures.

Adv Mater

December 2024

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.

Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.

View Article and Find Full Text PDF

In regional cerebrovascular monitoring, cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection, as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting. This study's aim is to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Portable and affordable (spectro)photometers based on digital color sensors are gaining significance in analytical chemistry due to their compact design, cost-effectiveness and integration capabilities. Despite their inherent straight-forward operation, various digital light sensors with distinct performance and optical characteristics are available on the market. For instance, AS7341 and AS7262 are multi-channel color sensors that covers eight and six spectra regions, respectively, while TCS34725 operates using three channels (red, green, and blue).

View Article and Find Full Text PDF

The increasing demand for portable spectral analysis has driven the development of miniaturized spectrometers. Computational spectrometers, based on algorithmic reconstruction, are a potential solution to meet this demand. We report on the design and implementation of an integrated computational spectrometer on a silicon-on-insulator (SOI) substrate.

View Article and Find Full Text PDF

One-step detection of nanoplastics in aquatic environments using a portable SERS chessboard substrate.

Talanta

January 2025

Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China. Electronic address:

Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!