Background: One of the most common chronic neurological disorders in dogs is idiopathic epilepsy (IE) diagnosed as epilepsy without structural changes in the brain. In the current study the hypothesis should be proven that subtle grey matter changes occur in epileptic dogs. Therefore, magnetic resonance (MR) images of one dog breed (Beagles) were used to obtain an approximately uniform brain shape. Local differences in grey matter volume (GMV) were compared between 5 healthy Beagles and 10 Beagles with spontaneously recurrent seizures (5 dogs with IE and 5 dogs with structural epilepsy (SE)), using voxel-based morphometry (VBM). T1W images of all dogs were prepared using Amira 6.3.0 for brain extraction, FSL 4.1.8 for registration and SPM12 for realignment. After creation of tissue probability maps of cerebrospinal fluid, grey and white matter from control images to segment all extracted brains, GM templates for each group were constructed to normalize brain images for parametric statistical analysis, which was achieved using SPM12.
Results: Epileptic Beagles (IE and SE Beagles) displayed statistically significant reduced GMV in olfactory bulb, cingulate gyrus, hippocampus and cortex, especially in temporal and occipital lobes. Beagles with IE showed statistically significant decreased GMV in olfactory bulb, cortex of parietal and temporal lobe, hippocampus and cingulate gyrus, Beagles with SE mild statistically significant GMV reduction in temporal lobe (p < 0.05; family- wise error correction).
Conclusion: These results suggest that, as reported in epileptic humans, focal reduction in GMV also occurs in epileptic dogs. Furthermore, the current study shows that VBM analysis represents an excellent method to detect GMV differences of the brain between a healthy dog group and dogs with epileptic syndrome, when MR images of one breed are used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819682 | PMC |
http://dx.doi.org/10.1186/s12917-018-1373-8 | DOI Listing |
Clin Neuroradiol
January 2025
Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), 24105, Kiel, Germany.
Purpose: Magnetic Resonance Imaging based brain segmentation and volumetry has become an important tool in clinical routine and research. However the impact of the used hardware is only barely investigated. This study aims to assess the influence of scanner manufacturer, field strength and head-coil on volumetry results.
View Article and Find Full Text PDFCureus
December 2024
Radiology, Midland Metropolitan University Hospital, Birmingham, GBR.
Tuberculosis is a disease caused by (TB), demonstrating a vast clinical spectrum that can potentially involve all systems of the body. We present the case of a female in her late 20s, with an employment background in healthcare. She recently moved to the UK from India.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are distinct demyelinating diseases of the central nervous system, each characterized by unique patterns of motor, sensory, and visual dysfunction. While MS typically affects the brain and spinal cord, NMOSD predominantly targets the optic nerves and spinal cord. This study aims to elucidate the morphometric differences between MS and NMOSD by focusing on gray matter volume changes in specific brain regions.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Kinesiology, University of Maryland, College Park, Maryland, USA.
Background: Higher cardiorespiratory fitness and cardiovascular endurance (CE) have been shown to be neuroprotective in older adulthood, but the mechanisms underlying this neuroprotection across the adult lifespan are poorly understood. The current study sought to examine the neuroprotective effects of CRF on gray matter (GM) and white matter (WM) volumes, and mean cortical thickness (MCT), using a large sample across the adult lifespan. We also examined sex differences in these relationships.
View Article and Find Full Text PDFNeuroimage Clin
January 2025
Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China. Electronic address:
Patients with chronic subcortical stroke undergo regional and network morphometric reorganizations beyond the lesion site, but the interplay between network and regional reorganization remains poorly understood. We aimed to clarify the reorganization patterns of the individualized differential structural covariance networks (IDSCN) in chronic subcortical stroke and investigate their associations with regional gray matter volume (GMV) changes and functional recovery. Structural MRI from four datasets enrolled 112 patients with chronic subcortical stroke (81 male, age: 55.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!