Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

Sensors (Basel)

Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, 27100 Pavia, Italy.

Published: February 2018

For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856128PMC
http://dx.doi.org/10.3390/s18020603DOI Listing

Publication Analysis

Top Keywords

optical readout
8
hollow glass
8
optical
5
spectral
4
spectral optical
4
readout rectangular-miniature
4
rectangular-miniature hollow
4
tubing
4
glass tubing
4
tubing refractive
4

Similar Publications

CAVITY OPTICAL TRANSDUCER PLATFORM WITH INTEGRATED ACTUATION FOR MULTIPLE SENSING APPLICATIONS.

Tech Dig Solid State Sens Actuator Microsyst Workshop

June 2016

Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Maryland, USA.

We present an on-chip cavity optomechanical transducer platform that combines high measurement bandwidth and very low displacement noise floor with compactness, robustness, small size, and potential for low cost batch fabrication inherent in micro-electro- mechanical- systems (MEMS) [1]. Our fiber-pigtailed transducers use surface-micromachined silicon-on-insulator photonic, low-stress silicon nitride structural and metal electrical actuation layers, while front- and backside bulk micromachining defines v-grooves and overhanging cantilevers. The motion of the mechanical devices, such as cantilevers and high mechanical quality factor membrane resonators, is optically measured by integrated silicon micro disk optical cavities.

View Article and Find Full Text PDF

Unlabelled: Calcium imaging is a key method to record the spiking activity of identified and genetically targeted neurons. However, the observed calcium signals are only an indirect readout of the underlying electrophysiological events (single spikes or bursts of spikes) and require dedicated algorithms to recover the spike rate. These algorithms for spike inference can be optimized using ground truth data from combined electrical and optical recordings, but it is not clear how such optimized algorithms perform on cell types and brain regions for which ground truth does not exist.

View Article and Find Full Text PDF

Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding.

Microsyst Nanoeng

January 2025

Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.

Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.

View Article and Find Full Text PDF

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

Porous Silicon on Paper: A Platform for Quantitative Rapid Diagnostic Tests.

ACS Appl Mater Interfaces

January 2025

Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.

Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!