Lung macrophages (LMs) are essential immune effector cells that are pivotal in both innate and adaptive immune responses to inhaled foreign matter. They either reside within the airways and lung tissues (from early life) or are derived from blood monocytes. Similar to macrophages in other organs and tissues, LMs have natural plasticity and can change phenotype and function depending largely on the microenvironment they reside in. Phenotype changes in lung tissue macrophages have been implicated in chronic inflammatory responses and disease progression of various chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). LMs have a wide variety of functional properties that include phagocytosis (inorganic particulate matter and organic particles, such as viruses/bacteria/fungi), the processing of phagocytosed material, and the production of signaling mediators. Functioning as janitors of the airways, they also play a key role in removing dead and dying cells, as well as cell debris (efferocytic functions). We herein review changes in LM phenotypes during chronic lung disease, focusing on COPD, as well as changes in their functional properties as a result of such shifts. Targeting molecular pathways involved in LM phenotypic shifts could potentially allow for future targeted therapeutic interventions in several diseases, such as COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855804 | PMC |
http://dx.doi.org/10.3390/ijms19020582 | DOI Listing |
Intern Med
January 2025
Department of Hematology, Suita Municipal Hospital, Japan.
A 51-year-old woman with persistent proliferation of natural killer (NK) cells in her peripheral blood was diagnosed with NK-large granular lymphocytic leukemia (NK-LGLL). During follow-up, computed tomography revealed multiple infiltrative pulmonary lesions. A flow cytometric analysis of bronchoalveolar lavage fluid showed infiltration of NK cells, resulting in a diagnosis of pulmonary infiltration by NK-LGLL.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.
Inflammatory diseases are often chronic and recurrent, and current treatments do not typically remove underlying disease drivers. T cells participate in a wide range of inflammatory diseases such as psoriasis, Crohn's disease, oesophagitis and multiple sclerosis, and clonally expanded antigen-specific T cells may contribute to disease chronicity and recurrence, in part by forming persistent pathogenic memory. Chronic rhinosinusitis and asthma are inflammatory airway diseases that often present as comorbidities.
View Article and Find Full Text PDFJ Bras Pneumol
January 2025
. Instituto D'Or de Pesquisa e Ensino - IDOR - Hospital Cárdio-Pulmonar, Rede D'Or, Salvador (BA) Brasil.
Objective: A significant number of patients with chronic thromboembolic pulmonary hypertension (CTEPH) are not eligible for pulmonary endarterectomy and may be treated with balloon pulmonary angioplasty (BPA). Although BPA programs have recently been developed in Brazil, no results have yet been published. The objective of this study was to assess the clinical and hemodynamic progression of the first patients treated with BPA at our center.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom.
Introduction: Undiagnosed chronic disease has serious health consequences, and variation in rates of underdiagnosis between populations can contribute to health inequalities. We aimed to estimate the level of undiagnosed disease of 11 common conditions and its variation across sociodemographic characteristics and regions in England.
Methods: We used linked primary care, hospital and mortality data on approximately 1.
J Trauma Acute Care Surg
November 2024
From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida.
Background: Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!