Background:  Computer-aided surgical simulation (CASS) has redefined surgery, improved precision and reduced the reliance on intraoperative trial-and-error manipulations. CASS is provided by third-party services; however, it may be cost-effective for some hospitals to develop in-house programs. This study provides the first cost analysis comparison among traditional (no CASS), commercial CASS, and in-house CASS for head and neck reconstruction.

Methods:  The costs of three-dimensional (3D) pre-operative planning for mandibular and maxillary reconstructions were obtained from an in-house CASS program at our large tertiary care hospital in Northern Virginia, as well as a commercial provider (Synthes, Paoli, PA). A cost comparison was performed among these modalities and extrapolated in-house CASS costs were derived. The calculations were based on estimated CASS use with cost structures similar to our institution and sunk costs were amortized over 10 years.

Results:  Average operating room time was estimated at 10 hours, with an average of 2 hours saved with CASS. The hourly cost to the hospital for the operating room (including anesthesia and other ancillary costs) was estimated at $4,614/hour. Per case, traditional cases were $46,140, commercial CASS cases were $40,951, and in-house CASS cases were $38,212. Annual in-house CASS costs were $39,590.

Conclusions:  CASS reduced operating room time, likely due to improved efficiency and accuracy. Our data demonstrate that hospitals with similar cost structure as ours, performing greater than 27 cases of 3D head and neck reconstructions per year can see a financial benefit from developing an in-house CASS program.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0037-1621735DOI Listing

Publication Analysis

Top Keywords

in-house cass
24
cass
13
head neck
12
operating room
12
surgical simulation
8
cost comparison
8
comparison traditional
8
in-house
8
commercial cass
8
cass program
8

Similar Publications

Tracing electron density changes in langbeinite under pressure.

IUCrJ

January 2022

Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland.

Pressure is well known to dramatically alter physical properties and chemical behaviour of materials, much of which is due to the changes in chemical bonding that accompany compression. Though it is relatively easy to comprehend this correlation in the discontinuous compression regime, where phase transformations take place, understanding of the more subtle continuous compression effects is a far greater challenge, requiring insight into the finest details of electron density redistribution. In this study, a detailed examination of quantitative electron density redistribution in the mineral langbeinite was conducted at high pressure.

View Article and Find Full Text PDF

The promotion of plug-in electric vehicles (PEVs) is pivotal to China's carbon neutrality strategy. Therefore, it is important to understand the vehicle market evolution and its impacts in terms of costs, sales, industry fuel economy, and PEV's battery material demand. By examining vehicle technologies, cost, policy incentives, infrastructure, and driver behavior, this study quantitatively projects the dynamics of China's passenger vehicle market from 2020 to 2050 under multiple technology evolution scenarios.

View Article and Find Full Text PDF

Health systems invest significant resources in leadership development for physicians and other health professionals. Competent leadership is considered vital for maintaining and improving quality and patient safety. We carried out this systematic review to synthesise new empirical evidence regarding medical leadership development programme factors which are associated with outcomes at the clinical and organisational levels.

View Article and Find Full Text PDF

Three-dimensional printed custom cutting guides (CCGs) are becoming more and more investigated in medical literature, as a patient-specific approach is often desired and very much needed in today's surgical practice. Three-dimensional printing applications and computer-aided surgical simulations (CASS) allow for meticulous preoperatory planning and substantial reductions of operating time and risk of human error. However, several limitations seem to slow the large-scale adoption of 3D printed CCGs.

View Article and Find Full Text PDF

Perylenediimide (PDI) derivatives have been widely studied as electron acceptor alternatives to fullerenes in organic photovoltaics (OPVs) because of their tunable absorption in the visible range, inexpensive synthesis, and photochemical stability. A common motif for improving device efficiency involves joining multiple PDIs together through electron-rich linkers to form a twisted acceptor-donor-acceptor molecule. Molecular features such as ring fusion are further employed to modify the structure locally and in films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!