Molecular dynamics simulations were used to describe and quantify the role of edge groups on the hydrating properties of graphene oxide (GO). For this, six different oxygen concentrations were investigated, and in four of them, carboxyl groups were present. Structural analysis indicates a greater probability for the water solvation around the GO edges in detriment of the region of its basal plane, while hydrogen bonding analyses indicates that edge groups are very expressive, participating in about 60% of the total number of bonds. The impact of this bond network formed by edge groups is rationalized in energetic and thermodynamic terms. The resulting hydrophilicity observed, as expected, is of electrostatic origin and has a larger contribution from the edge groups that varies from 22 to 57% depending on the concentration. Hydration free energy and potential of mean force calculations support these findings. It was observed that the edge groups contribute up to 51% of the total hydration-free energy and that the PMF indicates the tendency for spontaneous aggregation at all investigated concentrations, being lower the higher the concentration of oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b00311 | DOI Listing |
Phys Rev Lett
December 2024
Clermont INP, Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France.
The combination of an in-plane honeycomb potential and of a photonic spin-orbit coupling (SOC) emulates a photonic or polaritonic analog of bilayer graphene. We show that modulating the SOC magnitude allows us to change the overall lattice periodicity, emulating any type of moiré-arranged bilayer graphene with unique all-optical access to the moiré band topology. We show that breaking the time-reversal symmetry by an effective exciton-polariton Zeeman splitting opens a large topological gap in the array of moiré flat bands.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.
View Article and Find Full Text PDFEur Heart J
January 2025
Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
Background And Aims: The association between periprocedural change in tricuspid regurgitation (TR) and outcomes in patients undergoing mitral transcatheter edge-to-edge repair (M-TEER) is unclear. This study aimed to examine the prognostic value of TR before and after M-TEER.
Methods: Patients in the OCEAN-Mitral registry were divided into four groups according to baseline and post-procedure echocardiographic assessments: no TR/no TR (no TR), no TR/significant TR (new-onset TR), significant TR/no TR (normalized TR), and significant TR/significant TR (residual TR) (all represents before/after M-TEER).
J Dent Sci
January 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China.
Background/purpose: Macrophages are considered to play an important role in the development of chronic apical periodontitis (CAP). However the function of tissue resident macrophages in CAP is unclear. This study aims to investigate the potential role of macrophages of different origins in CAP.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
NovaMechanics Ltd, Nicosia 1070, Cyprus.
The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced models, approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!