Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Study Objectives: Brain-derived neurotrophic factor (BDNF) expression and homeostatic regulation of rapid eye movement (REM) sleep are critical for neurogenesis and behavioral plasticity. Accumulating clinical and experimental evidence suggests that decreased BDNF expression is causally linked with the development of REM sleep-associated neuropsychiatric disorders. Therefore, we hypothesize that BDNF plays a role in sleep-wake (S-W) activity and homeostatic regulation of REM sleep.
Methods: Male and female wild-type (WT; BDNF +/+) and heterozygous BDNF (KD; BDNF +/-) rats were chronically implanted with S-W recording electrodes to quantify baseline S-W activity and REM sleep homeostatic regulatory processes during the light phase.
Results: Molecular analyses revealed that KD BDNF rats had a 50% decrease in BDNF protein levels. During baseline S-W activity, KD rats exhibited fewer REM sleep episodes that were shorter in duration and took longer to initiate. Also, the baseline S-W activity did not reveal any sex difference. During the 3-hour selective REM sleep deprivation, KD rats failed to exhibit a homeostatic drive for REM sleep and did not exhibit rebound REM sleep during the recovery S-W period.
Conclusion: Interestingly, both genotypes did not reveal any sex difference in the quality and/or quantity of REM sleep. Collectively, these results, for the first time, unequivocally demonstrate that an intact BDNF system in both sexes is a critical modulator for baseline and homeostatic regulation of REM sleep. This study further suggests that heterozygous BDNF knockdown rats are a useful animal model for the study of the cellular and molecular mechanisms of sleep regulation and cognitive functions of sleep.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018753 | PMC |
http://dx.doi.org/10.1093/sleep/zsx194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!