Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819807PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192776PLOS

Publication Analysis

Top Keywords

corn yield
12
fertilization timings
12
corn
8
subtropical conditions
8
corn planting
8
planting time
8
groups n-oats
8
fertilization
5
understanding timing
4
timing corn
4

Similar Publications

Analyses of the genetic distance and composition of inbred lines are a prerequisite for parental selection and to exploit heterosis in plant breeding programs. The study aimed to assess genetic diversity and population structure of a maize germplasm panel comprising 182 founder lines and 866 derived inbred lines using Single Nucleotide Polymorphism (SNP) markers to identify genetically unique lines for hybrid breeding. The founder lines were genotyped with 1201 SNPs, and the derived lines with 1484 SNPs.

View Article and Find Full Text PDF

Plant mechanical failure, known as lodging, has detrimental impacts on the quality and quantity of maize yields. Failure can occur at stalks (stalk lodging) or at roots (root lodging). While previous research has focused on proxy measures for stalk stiffness, stalk strength, and root strength, there is a need to quantify the root system stiffness, which quantifies the force-displacement relationship.

View Article and Find Full Text PDF

Rice, wheat, and maize grains are staple foods, widely consumed for their mineral and nutritional values. However, they can accumulate toxic elements from contaminated soils, posing health risks. This study investigates the bioaccumulation patterns of 52 elements (including nutrients, heavy metals, and rare earth elements) in various parts (grain, husk, straw, and root) of cereals grown in a heavily polluted region.

View Article and Find Full Text PDF

Harnessing Genetic Resistance in Maize and Integrated Rust Management Strategies to Combat Southern Corn Rust.

J Fungi (Basel)

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China.

Southern corn rust (SCR) caused by Underw. has recently emerged as a focal point of study because of its extensive distribution, significant damage, and high prevalence in maize growing areas such as the United States, Canada, and China. is an obligate biotrophic fungal pathogen that cannot be cultured in vitro or genetically modified, thus complicating the study of the molecular bases of its pathogenicity.

View Article and Find Full Text PDF

Maize ( L.) production in sub-Saharan Africa can be improved by using hybrids with genetic resistance to maize lethal necrosis (MLN). This study aimed to assess the general (GCA) and specific combining ability (SCA), reciprocal effects, and quantitative genetic basis of MLN resistance and agronomic traits in tropical maize inbred lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!