Background/purpose: Ageing has profound impact on the immune system, mainly on T-cells. However, it has been suggested that chronic exercise may delay immunosenescence. Master athletes represent an interesting sub-demographic group to test this theory since they maintain a high training frequency and load throughout life. The purpose of this study was to evaluate the effects of lifelong training on the senescence and mobilization of T lymphocytes in response to acute exercise.
Material And Methods: Nineteen athletes who regularly participated in training and competitions for more than 20 years throughout their lives and a control group of 10 healthy individuals participated in this study. All subjects performed a progressive test to exhaustion on a cycle ergometer. Blood samples were obtained before (Pre), 10 min after the test (Post) and 1 h after the test (1h). Phenotypic study of peripheral blood T-cells was performed by flow cytometry. Genes of interest expression was done on T-cells purified by cell sorting.
Results: Master athletes had a lower percentage of senescent naïve, central memory and effector memory CD8+ T-cells and senescent naïve and effector memory CD4+ T-cells. Age had a positive effect on SLEC CD8+ T-cells and a negative effect on naïve CD8+ T-cells. VO2max positively correlated with the proportion of naïve CD4+ T-cells and negatively correlated with the percentage of total lymphocytes. No differences were founded for CD4+ and CD8+ T-cells and their subsets between master athletes and the control group at all times of measurement. No differences were observed in the CD45RA expressing effector memory cells (EMRA) for the various study conditions. The mRNA expression of the CCR7 gene for naïve CD8+ T-cells and the Fas-L gene for effector-terminal CD8+ T-cells was not different between masters and controls and did not change in response to the maximal protocol test.
Conclusion: In conclusion, maintaining high levels of aerobic fitness during the natural course of aging may help prevent the accumulation of senescent T-cells.
Download full-text PDF |
Source |
---|
Cancers (Basel)
January 2025
Department of Otolaryngology/Head and Neck Surgery, Vrije Universiteit, Amsterdam UMC, Boelelaan 1117, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
Background/objectives: Most studies on the interaction between the immune system and cancer focus on T-cells, whereas studies on tumor-infiltrating B-lymphocytes (TIL-Bs) are still underrepresented. The aim of this study was to assess the prognostic impact of TIL-Bs in early- and advanced-stage oral cavity squamous cell carcinoma (OCSCC).
Methods: In total, 222 OCSCCs were studied.
Cancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA.
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!