Topological Electride YC.

Nano Lett

Department of Materials Science and Engineering , University of Utah, Salt Lake City , Utah 84112 , United States.

Published: March 2018

Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride YC. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of YC, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of YC. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b05386DOI Listing

Publication Analysis

Top Keywords

[formula text]
8
nontrivial electronic
8
electronic topology
8
topological surface
8
surface state
8
topological
4
topological electride
4
electride two-dimensional
4
two-dimensional electrides
4
electrides layered
4

Similar Publications

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Behavior modeling for a new flexure-based mechanism by Hunger Game Search and physics-guided artificial neural network.

Sci Rep

January 2025

Laboratory for Artificial Intelligence, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

Compliant mechanism has some advantages and has been widely applied in many accurate positioning systems. However, modeling the compliant mechanism behavior has suffered from many challenges, such as unstable results, and the limitation of training data set. In the field of compliant mechanism modeling, there has been no research interested in applying meta-heuristics optimization algorithms to optimize the weights and biases of the neural network globally.

View Article and Find Full Text PDF

The intelligent selenium-enriched tea withering control system.

Sci Rep

January 2025

College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, 445000, China.

This paper addresses the low level of intelligence in tea processing equipment in Enshi Prefecture by designing an intelligent withering control system based on the STMicroelectronics 32-bit Microcontroller (STM32). This control system can achieve real-time monitoring of the withering environment and automate the control of heating and ventilation dehumidification modules. By integrating IoT technology, relevant users can view the tea production process via mobile devices, enabling intelligent and remote production operations.

View Article and Find Full Text PDF

Inverse design with topology optimization considers a promising methodology for discovering new optimized photonic structure that enables to break the limitations of the forward or the traditional design especially for the meta-structure. This work presents a high efficiency mid infra-red imaging photonics element along mid infra-red wavelengths band starts from 2 to 5 µm based on silicon nitride optimized material structures. The first two designs are broadband focusing and reflective meta-lens under very high numerical aperture condition (NA = 0.

View Article and Find Full Text PDF

Little is known about the influence of fatigue in repeated overground sprinting on force-velocity properties in children and adolescents, while this ability to repeat sprints is important for future progress in rugby union. Sprint time decline is commonly used to assess fatigability. However, it does not provide data on biomechanical aspects of sprint performance such as maximal power, force, and velocity production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!