The persistence of acesulfame (ACE) in wastewater treatment (and subsequently the aquatic environment) has led to its use as a marker substance for wastewater input into surface water and groundwater. However, ACE degradation of >85% during summer and autumn was observed in nine German wastewater treatment plants (WWTPs). Annual removal performance was more stable in larger plants, enhanced by low biological oxygen demand and impeded by water temperatures below 10 °C. Literature data suggest that the potential to degrade ACE emerged in WWTPs around the year 2010. This development is ongoing, as illustrated by ACE content in the German rivers Elbe and Mulde: Between 2013 and 2016 the ACE mass load decreased by 70-80%. In enrichment cultures with ACE as sole carbon source the carbonaceous fraction of ACE was removed completely, indicating catabolic biotransformation and the inorganic compound sulfamic acid formed in quantitative amounts. Sequencing of bacterial 16S rRNA genes suggests that several species are involved in ACE degradation, with proteobacterial species affiliated to Phyllobacteriaceae, Methylophilaceae, Bradyrhizobiaceae, and Pseudomonas becoming specifically enriched. ACE appears to be the first micropollutant for which the evolution of a catabolic pathway in WWTPs has been witnessed. It can yet only be speculated whether the emergence of ACE removal in WWTPs in different regions of the world is due to independent evolution or to global spreading of genes or adapted microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b05619DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
ace
10
ace degradation
8
emerging biodegradation
4
biodegradation persistent
4
persistent artificial
4
artificial sweetener
4
sweetener acesulfame
4
acesulfame biological
4
wastewater
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!