Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life-span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.14095DOI Listing

Publication Analysis

Top Keywords

leaf coloration
40
growing season
36
season temperature
20
temperature
16
autumn minimum
16
minimum temperature
16
winter deciduous
12
climate change
12
low temperature
12
leaf
11

Similar Publications

The wilting and yellowing of leafy vegetables caused by spoilage bacteria resulted in serious resource wastage. This study investigated the efficacy of a combined lactic acid (LA) and tartaric acid (TA) treatment against four predominant spoilage bacteria (Erwinia persicina, Citrobacter freundii, Pseudomonas putida, and Pseudomonas punonensis) isolated from spinach and oilseed rape. Detailed analysis using Fourier-transform infrared spectroscopy, flow cytometry, scanning electron microscopy, and light microscopy revealed substantial cellular damage in the bacteria treated by LA and TA, including loss of intracellular material, and collapse of cellular morphology, as well as effective biofilm removal.

View Article and Find Full Text PDF

is a deciduous shrub or small tree. It is a popular ornamental plant because of its beautiful leaves, which change colour in autumn. This study revealed 116 genes within the genome of .

View Article and Find Full Text PDF

The characterization of in regulation of flower size through tuning cell expansion genes.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.

Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.

View Article and Find Full Text PDF

Jewel beetles pose significant threats to forestry, and effective traps are needed to monitor and manage them. Green traps often catch more beetles, but purple traps catch a greater proportion of females. Understanding the function and mechanism of this behavior can provide a rationale for trap optimization.

View Article and Find Full Text PDF

Comprehensive analysis of metabolomics and transcriptomics reveals varied tepal pigmentation across Gloriosa varieties.

BMC Plant Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.

Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!