A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Virtual modeling, stereolithography, and intraoperative CT guidance for the optimization of sagittal synostosis reconstruction: a technical note. | LitMetric

Introduction: Sagittal synostosis affects 1 in 1000 live births and may result in increased intracranial pressure, hindrance of normal neural development, and cosmetic deformity due to scaphocephaly. Historically, several approaches have been utilized for surgical correction and recently, computed tomography (CT)-guided reconstruction procedures are increasingly used. In this report, the authors describe the use of a CT-derived virtual and stereolithographic (3D printed) craniofacial models, which are used to guide intraoperative bone placement, and intraoperative CT guidance for confirmation of bone placement, to ensure the accuracy of surgical correction of scaphocephaly, as demonstrated to parents.

Methods: Preoperative high-resolution CT imaging was used to construct 3D image sets of the skulls of two infants (a 14-month-old female and a 6-month-old male) with scaphocephaly. These 3D image sets were then used to create a virtual model of the proposed surgical correction for each of the infants' deformities, which was then printed and made available for use intraoperatively to plan the bone flap, fashion the bone cuts, and optimize graft placement. After the remodeling, adherence to the preoperative plan was assessed by overlaying a CT scan of the remodeled skull with the virtual model. Deviations from the preoperative model were noted.

Results: Both patients had excellent postoperative cosmetic correction of head shape and contouring. The mean operative time was 5 h, blood loss was 100 ml, and one child required modification of the subocciput after intraoperative imaging showed a deviation of the reconstruction from the surgical goal as depicted by the preoperative model.

Conclusion: The addition of neuro-navigation to stereolithographic modeling ensured the accuracy of the reconstruction for our patients and provided greater confidence to both surgeons and parents. While unisutural cases are presented for clarity, correction was still required for one patient. The cost of the models and the additional CT required must be weighed against the complexity of the procedure and possibly reserved for patients with potentially complicated corrections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00381-018-3746-5DOI Listing

Publication Analysis

Top Keywords

surgical correction
12
intraoperative guidance
8
sagittal synostosis
8
bone placement
8
image sets
8
virtual model
8
correction
5
virtual
4
virtual modeling
4
modeling stereolithography
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!