Carbene insertion into N-H bonds with size-selectivity induced by a microporous ruthenium-porphyrin metal-organic framework.

Dalton Trans

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.

Published: March 2018

A stable and porous porphyrinic metal-organic framework, Ru-PMOF-1(Hf), has been prepared through the self-assembly of [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato](monocarbonyl)ruthenium (Ru(TCPP)(CO)) and HfCl. Single-crystal X-ray diffraction analysis reveals that Ru-PMOF-1(Hf) possesses a three-dimensional (3D) structure with orthogonal 1D open channels of 1.9 × 1.9 nm. The porous nature has been confirmed by gas adsorption measurements. Its catalytic activity for the carbene insertion into N-H bonds has been investigated. The catalytic results indicate that Ru-PMOF-1(Hf) is efficient for the insertion reactions of ethyl 2-diazoacetate (EDA) into a range of secondary amines with up to 92% yield, 938 TON and 2475 h TOF. As an excellent heterogeneous catalyst, Ru-PMOF-1(Hf) can be recovered and reused for at least ten runs with negligible loss of catalytic activity. Due to its uniform microporosity in three orthogonal directions, Ru-PMOF-1(Hf), of which the particle sizes were carefully controlled by sieving, can induce size selectivity regarding the amine substrates. The reactivities of different unbranched dialkylamines, such as diethylamine (NHEt), dibutylamine (NHBu) and dipentylamine (NHPent), have been compared, and the results display an apparent decreasing trend along the chain lengthening. For comparison, the corresponding nonporous and homogeneous catalyst Ru(TMCPP)(CO) (TMCPP = tetrakis(4-methoxycarbonylphenyl)porphyrin) displays negligible difference towards the reactions with these three amines.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt00434jDOI Listing

Publication Analysis

Top Keywords

carbene insertion
8
insertion n-h
8
n-h bonds
8
metal-organic framework
8
catalytic activity
8
ru-pmof-1hf
5
bonds size-selectivity
4
size-selectivity induced
4
induced microporous
4
microporous ruthenium-porphyrin
4

Similar Publications

Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner.

View Article and Find Full Text PDF

Dirhodium-Palladium Dual-Catalyzed [1 + 1 + 3] Annulation to Heterocycles Using Primary Amines or HO as the Heteroatom Sources.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The ever-increasing demand in chemical biology and medicinal research requires the development of new synthetic methods for the rapid construction of libraries of heterocycles from simple raw materials. In this context, the utilization of primary amines or HO as the simple - or -sources in the assembly of a heterocyclic ring skeleton is highly desirable from the viewpoint of atom- and step-economy. Herein, we describe a highly efficient three-component reaction of diazo, allylic diacetates, and commercially available anilines (or HO) to access structurally diverse pyrrolidine and tetrahydrofuran derivatives.

View Article and Find Full Text PDF

Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp)-H bond activation.

Nat Commun

December 2024

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.

Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides.

View Article and Find Full Text PDF

Addition and Oxidation Reactivity of a Pentacoordinate Nickelacyclobutane.

Chemistry

December 2024

Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Institute for Sustainable and Circular Chemistry, Universitetisweg 99, 3584 CG, Utrecht, The, Netherlands.

Nickelacyclobutanes are reactive intermediates in catalytic cycles including cyclopropanation and insertion reactions. The stoichiometric study of these intermediates has shown that their reactivity is highly influenced by the coordination environment of the nickel center. A pentacoordinated nickelacyclobutane embedded in a diphosphine pincer ligand has been shown to selectively undergo various reactions with exogenous ligands, including [2+2] cycloreversion and carbene transfer to an isocyanide.

View Article and Find Full Text PDF

The ultraviolet (UV) photodissociation of pyruvic acid through the absorption of solar actinic flux generates methylhydroxycarbene (MHC) in the atmosphere. It is recognized that isolated MHC can undergo unimolecular isomerization to form acetaldehyde and vinyl alcohol. However, the rates and mechanism for its possible bimolecular reactions with atmospheric constituents, which can occur in parallel with its unimolecular reaction, is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!