Versatile reactivities of rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand.

Dalton Trans

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.

Published: March 2018

Herein, rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand with the formula LRE(CHSiMe)(thf) (RE = Y (1a), Dy (1b), Er (1c), Yb (1d); L = MeC(NDipp)CHC(Me)NCHCHNCH-2,5-Me, Dipp = 2,6-PrCH) were synthesized via the reactions of the β-diketimine HL with the rare-earth metal trialkyl complexes RE(CHSiMe)(thf) in high yields. The reactivities of 1 with pyridine derivatives, unsaturated substrates, and elemental sulfur were investigated, and some interesting chemical transformations were observed. Ligand exchange and activation of sp and sp C-H bonds occurred during the reactions with pyridine derivatives to afford different types of mononuclear rare-earth metal pyridyl complexes, namely, LEr(CHSiMe)(η-NCH) (2c), LRE(η-CH-2-NCH-4,6-Me) (RE = Y (3a), Er (3c)), and LRE(CHSiMe)(η-(C,N)-2-(2-CHNCH)) (RE = Er (4c), Yb = (4d)). Similarly, activation of the sp C-H bond occurred during the reaction of phenylacetylene with 1c to produce the dinuclear erbium alkynyl complex [LEr(CHSiMe)(μ-C[triple bond, length as m-dash]CPh)] (5c). The mixed amidinate-β-diketiminato ytterbium complex LYb[(Dipp)NC(CHSiMe)N(Dipp)](CHSiMe) (6d) was obtained by the insertion of bis(2,6-diisopropylphenyl)carbodiimide into a Yb-alkyl bond, as well as via the direct alkane elimination of a CHSiMe moiety with bis(2,6-diisopropylphenyl)formamidine to afford the erbium complex LEr(DippNCHNDipp)(CHSiMe) (7c). A rare sp C-H bond oxidation of the β-diketiminato backbone with elemental sulfur insertion was detected to provide the unprecedented dinuclear rare-earth metal thiolate complexes (LRE)(μ-SCHSiMe)(μ-SCC(Me)(NDipp)C(Me)NCHCHNCHMe-2,5) (RE = Y (8a), Er (8c)) in the reactions of S with 1a and 1c, respectively. The molecular structures of the complexes 1-8 were determined by single-crystal X-ray diffraction analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt04410kDOI Listing

Publication Analysis

Top Keywords

rare-earth metal
20
metal dialkyl
8
dialkyl complexes
8
complexes supported
8
supported neutral
8
neutral pyrrolyl-functionalized
8
pyrrolyl-functionalized β-diketiminato
8
β-diketiminato ligand
8
pyridine derivatives
8
elemental sulfur
8

Similar Publications

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.

View Article and Find Full Text PDF

There is still much to be learned about the properties of siderophores and their applications. This study was designed to characterize and optimize the production of the siderophore produced by a marine bacterium Pseudomonas sp. strain ASA235 and then evaluate their use in bioleaching of rare earth elements (REEs) from spent Nickel-metal hydride (NiMH) batteries.

View Article and Find Full Text PDF

Sex disparities in the association between rare earth elements exposure and genetic mutation frequencies in lung cancer patients.

Sci Rep

January 2025

Department of Oncology, Senior Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, No.17 A Heishanhu Road, Haidian District, Beijing, 100853, China.

The ubiquitous use of rare earth elements (REEs) in modern living environments raised concern about their impact on human health. With the detrimental and beneficial effects of REEs reported by different studies, the genuine role of REEs in the human body remains a mystery. This study explored the association between REEs and genetic mutations in patients with lung adenocarcinoma (LUAD).

View Article and Find Full Text PDF

Tunning valence state of cobalt centers in Cu/Co-CoO for significantly boosting water-gas shift reaction.

Nat Commun

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.

Dual active sites with synergistic valence state regulation under oxidizing and reducing conditions are essential for catalytic reactions with step-wise mechanisms to modulate the complex adsorption sites of reactant molecules on the surfaces of heterogeneous catalysts with maximized catalytic performances, but it has been rarely explored. In this work, uniformly dispersed CuCo alloy and CoO nanosheet composite catalysts with dual active sites are constructed, which shows huge boost in activity for catalyzing water-gas shift reaction (WGSR), with a record high reaction rate reaching 204.2 μmol g s at 300 °C for CuCoO amongst the reported Cu-based and Co-based catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!