AI Article Synopsis

  • - The study investigated how a high-ALA (alpha-linolenic acid) diet affects EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) levels in red blood cells of young men with initially low levels of these fatty acids.
  • - After 12 weeks on a diet providing 14 g of ALA daily, ALA levels in the blood significantly increased, and EPA levels also rose, while unexpectedly, DHA levels decreased over time.
  • - The findings suggest that although ALA intake increases certain fatty acids and their metabolites, it is not sufficient to elevate overall EPA and DHA levels in the blood effectively.

Article Abstract

The essential omega-3 fatty acid alpha-linolenic acid (ALA, 18:3n3) can be converted into EPA and DHA. The aim of the present study was to determine the effect of a high-ALA diet on EPA and DHA levels in red blood cells (RBCs) and their oxylipins in the plasma of subjects with a low EPA and DHA status. Fatty acid concentrations [μg mL] and relative amounts [% of total fatty acids] in the RBCs of 19 healthy men (mean age 26.4 ± 4.6 years) were analyzed by means of GC-FID. Free plasma oxylipin concentrations were determined by LC-MS based targeted metabolomics. Samples were collected and analyzed at baseline (week 0) and after 1 (week 1), 3 (week 3), 6 (week 6), and 12 (week 12) weeks of high dietary ALA intake (14.0 ± 0.45 g day). ALA concentrations significantly (p < 0.001) increased from 1.44 ± 0.10 (week 0) to 4.65 ± 0.22 (week 1), 5.47 ± 0.23 (week 3), 6.25 ± 0.24 (week 6), and 5.80 ± 0.28 (week 12) μg mL. EPA concentrations increased from 6.13 ± 0.51 (week 0) to 7.33 ± 0.33 (week 1), 8.38 ± 0.42 (p = 0.021, week 3), 10.9 ± 0.67 (p < 0.001, week 6), and 11.0 ± 0.64 (p < 0.001, week 12) μg mL. DHA concentrations unexpectedly decreased from 41.0 ± 1.93 (week 0) to 37.0 ± 1.32 (week 1), 36.1 ± 1.37 (week 3), 35.1 ± 1.06 (p = 0.010, week 6), and 30.4 ± 1.09 (p < 0.001, week 12) μg mL. Relative ΣEPA + DHA amounts were unchanged during the intervention (week 0: 4.63 ± 0.19, week 1: 4.67 ± 0.16, week 3: 4.61 ± 0.13, week 6: 4.73 ± 0.15, week 12: 4.52 ± 0.11). ALA- and EPA-derived hydroxy- and dihydroxy-PUFA increased similarly to their PUFA precursors, although in the case of ALA-derived oxylipins, the concentrations increased less rapidly and to a lesser extent compared to the concentrations of their precursor FA. LA-derived oxylipins remained unchanged and arachidonic acid and DHA oxylipin concentrations were not significantly changed. Our results confirm that the intake of ALA is not a sufficient source for the increase of EPA + DHA in subjects on a Western diet. Specifically, a high-ALA diet results in increased EPA and declined DHA concentrations. However, the changes effectively balance each other out so that ΣEPA + DHA in RBCs - which is an established marker for health protective effects of omega-3-PUFA - remains constant. The PUFA levels in RBCs reflect the concentration and its changes in plasma hydroxy- and dihydroxy-PUFA concentrations for ALA and EPA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7fo01809fDOI Listing

Publication Analysis

Top Keywords

week
25
epa dha
24
week week
16
dha concentrations
12
week μg
12
0001 week
12
dha
11
concentrations
11
epa
9
red blood
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!