The role of inflammation in vascular disease is well recognized, involving dysregulation of both circulating immune cells as well as the cells of the vessel wall itself. Unrestrained vascular inflammation leads to pathological remodeling that eventually contributes to atherothrombotic disease and its associated sequelae (e.g., myocardial/cerebral infarction, embolism, and critical limb ischemia). Signaling events during vascular inflammation orchestrate widespread transcriptional programs that affect the functions of vascular and circulating inflammatory cells. The Krüppel-like factors (KLFs) are a family of transcription factors central in regulating vascular biology in states of homeostasis and disease. Given their abundance and diversity of function in cells associated with vascular inflammation, understanding the transcriptional networks regulated by KLFs will further our understanding of the pathogenesis underlying several pervasive health concerns (e.g., atherosclerosis, stroke, etc.) and consequently inform the treatment of cardiovascular disease. Within this review, we will discuss the role of KLFs in coordinating protective and deleterious responses during vascular inflammation, while addressing the potential targeting of these critical transcription factors in future therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807683 | PMC |
http://dx.doi.org/10.3389/fcvm.2018.00006 | DOI Listing |
Front Immunol
January 2025
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.
Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).
J Endocr Soc
January 2025
Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany.
Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.
(Pm) is a widespread zoonotic pathogen with the ability to infect wild animals, livestock, and humans. Pm infection can cause haemorrhagic pneumonia, indicating that the pathogenesis involves serious vascular injury and inflammation. 18β-Glycyrrhetinic acid (GA) has cardiovascular protective and anti-inflammatory effects, but its effect on vascular injury caused by Pm infection is not clear.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.
View Article and Find Full Text PDFWorld J Orthop
January 2025
Department of Trauma and Orthopaedics, AOSP Terni, Terni 05100, Umbria, Italy.
Platelet rich plasma (PRP) is an autologous blood product rich in platelets, showing promise in reducing inflammation and accelerating healing. While extensively utilized in plastic surgery, dermatology, and osteoarthritis treatment, its application in anterior cruciate ligament (ACL) injuries is limited. This article examines PRP's potential in ACL reconstruction (ACLR), exploring its history, current usage, controversies and future directions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!