Networks often exhibit structure at disparate scales. We propose a method for identifying community structure at different scales based on multiresolution modularity and consensus clustering. Our contribution consists of two parts. First, we propose a strategy for sampling the entire range of possible resolutions for the multiresolution modularity quality function. Our approach is directly based on the properties of modularity and, in particular, provides a natural way of avoiding the need to increase the resolution parameter by several orders of magnitude to break a few remaining small communities, necessitating the introduction of ad-hoc limits to the resolution range with standard sampling approaches. Second, we propose a hierarchical consensus clustering procedure, based on a modified modularity, that allows one to construct a hierarchical consensus structure given a set of input partitions. While here we are interested in its application to partitions sampled using multiresolution modularity, this consensus clustering procedure can be applied to the output of any clustering algorithm. As such, we see many potential applications of the individual parts of our multiresolution consensus clustering procedure in addition to using the procedure itself to identify hierarchical structure in networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818657 | PMC |
http://dx.doi.org/10.1038/s41598-018-21352-7 | DOI Listing |
J Inflamm Res
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
Background: Lung transplantation is the only effective therapeutic option for patients with end-stage lung disease. However, ischemia/reperfusion injury (IRI) during transplantation is a leading cause of primary graft dysfunction (PGD). Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has been implicated in IRI across various organs.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. Electronic address:
Aim: Standardized evaluation of [F]PI-2620 tau-PET scans in 4R-tauopathies represents an unmet need in clinical practice. This study aims to investigate the effectiveness of visual evaluation of [F]PI-2620 images for diagnosing 4R-tauopathies and to develop a straight-forward reading algorithm to improve objectivity and data reproducibility.
Methods: A total of 83 individuals with [F]PI-2620 PET scans were included.
Inflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Background: Plasma membrane tension-related genes (MTRGs) are known to play a crucial role in tumor progression by influencing cell migration and adhesion. However, their specific mechanisms in bladder cancer (BLCA) remain unclear.
Methods: Transcriptomic, clinical and mutation data from BLCA patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
J Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!