Melanoma exosomes promote mixed M1 and M2 macrophage polarization.

Cytokine

University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States. Electronic address:

Published: May 2018

Macrophages are key participants in melanoma growth and survival. In general, macrophages can be classified as M1 or M2 activation phenotypes. Increasing evidence demonstrates that melanoma exosomes also facilitate tumor survival and metastasis. However, the role of melanoma exosomes in directly influencing macrophage function is poorly understood. Herein, we investigated the hypothesis that natural melanoma exosomes might directly influence macrophage polarization. To explore this hypothesis, ELISA, RT-qPCR, and macrophage functional studies were performed in vitro using an established source of melanoma exosomes (B16-F10). ELISA results for melanoma exosome induction of common M1 and M2 cytokines in RAW 264.7 macrophages, revealed that melanoma exosomes do not polarize macrophages exclusively in the M1 or M2 direction. Melanoma exosomes induced the M1 and M2 representative cytokines TNF-α and IL-10 respectively. Further assessment, using an RT-qPCR array with RAW 264.7 and primary macrophages, confirmed and extended the ELISA findings. Upregulation of markers common to both M1 and M2 polarization phenotypes included CCL22, IL-12B, IL-1β, IL-6, i-NOS, and TNF-α. The M2 cytokine TGF-β was upregulated in primary but not RAW 264.7 macrophages. Pro-tumor functions have been attributed to each of these markers. Macrophage functional assays demonstrated a trend toward increased i-NOS (M1) to arginase (M2) activity. Collectively, the results provide the first evidence that melanoma exosomes can induce a mixed M1 and M2 pro-tumor macrophage activation phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857255PMC
http://dx.doi.org/10.1016/j.cyto.2018.02.002DOI Listing

Publication Analysis

Top Keywords

melanoma exosomes
32
raw 2647
12
melanoma
10
macrophage polarization
8
exosomes directly
8
macrophage functional
8
2647 macrophages
8
exosomes
7
macrophage
6
macrophages
6

Similar Publications

Oral delivery of dihydroartemisinin for the treatment of melanoma via bovine milk exosomes.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.

Cancer, particularly skin cancer, is a major cause of mortality worldwide, with melanoma being one of the most aggressive and challenging to treat types. Current therapeutic options, such as dacarbazine (DTIC), have limitations due to dose-related toxicities like liver toxicity. Therefore, there is a need for new and effective treatments for melanoma.

View Article and Find Full Text PDF

The cellular components of the tumor microenvironment (TME) comprise cancer cells and nonmalignant cells including stromal and immune cells. Exosomes are extracellular vesicles secreted by various types of cells that play a crucial role in intercellular communications within TME. The main goal of this study was to elucidate how exosomes of macrophage cells treated with doxorubicin (DOX) and DOX-loaded cyclodextrin-based nanosponges (DOX-CDNSs), affect melanoma cancer cell proliferation.

View Article and Find Full Text PDF

Photothermal therapeutic effect by gold nanostars/extracellular vesicles nanocomplex on melanoma cells.

J Pharm Sci

December 2024

Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan. Electronic address:

Photothermal therapy (PTT) is a method for treating cancer using the heat generated by light irradiation, often in combination with light-absorbing materials. Efficient PTT requires a drug delivery system to deliver light-absorbing materials to cancerous tissues. Gold nanostars (GNSs) enable efficient PTT through absorbing long-wavelength light.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play important roles in intercellular communication in various biological events. In particular, EVs released from cancer cells have attracted special attention. Although it has been reported that cancer-associated glycosphingolipids play important roles in the enhancement of malignant properties of cancer cells, the presence, behavior, and roles of glycosphingolipids in EVs have not been elucidated.

View Article and Find Full Text PDF

Radio-immunotherapy has offered emerging opportunities to treat invasive melanoma due to its immunostimulatory performances to activate antitumor immune responses. However, the immunosuppressive microenvironment and insufficient response rate significantly limit the practical efficacy. This study presents an autologous cell-derived exosomes (Exo)-engineered nanoagonist (MnExo@cGAMP) containing with metalloimmunotherapeutic agent (Mn ions) and nucleotidyltransferase (2',3'-cGAMP, a STING agonist) for boosting melanoma-targeted radio-immunotherapy by cascade cGAS-STING pathway activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!