Purpose: The ideal material for reconstruction of the scapholunate interosseous ligament (SLIL) should replicate the mechanical properties of the native SLIL to recreate normal kinematics and prevent posttraumatic arthritis. The purpose of our study was to evaluate the cyclic torsional and tensile properties of the native SLIL and load to failure tensile properties of the dorsal SLIL.
Methods: The SLIL bone complex was resected from 10 fresh-frozen cadavers. The scaphoid and lunate were secured in polymethylmethacrylate and mounted on a test machine that incorporated an x-y stage and universal joint, which permitted translations perpendicular to the rotation/pull axis as well as nonaxial angulations. After a 1 N preload, specimens underwent cyclic torsional testing (±0.45 N m flexion/extension at 0.5 Hz) and tensile testing (1-50 N at 1 Hz) for 500 cycles. Lastly, the dorsal 10 mm of the SLIL was isolated and displaced at 10 mm/min until failure.
Results: During intact SLIL cyclic torsional testing, the neutral zone was 29.7° ± 6.6° and the range of rotation 46.6° ± 7.1°. Stiffness in flexion and extension were 0.11 ± 0.02 and 0.12 ± 0.02 N m/deg, respectively. During cyclic tensile testing, the engagement length was 0.2 ± 0.1 mm, the mean stiffness was 276 ± 67 N/mm, and the range of displacement was 0.4 ± 0.1 mm. The dorsal SLIL displayed a 0.3 ± 0.2 mm engagement length, 240 ± 65 N/mm stiffness, peak load of 270 ± 91 N, and displacement at peak load of 1.8 ± 0.3 mm.
Conclusions: We report the torsional properties of the SLIL. Our novel test setup allows for free rotation and translation, which reduces out-of-plane force application. This may explain our observation of greater dorsal SLIL load to failure than previous reports.
Clinical Relevance: By matching the natural ligament with respect to its tensile and torsional properties, we believe that reconstructions will better restore the natural kinematics of the wrist and lead to improved outcomes. Future clinical studies should aim to investigate this further.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhsa.2018.01.004 | DOI Listing |
Materials (Basel)
November 2024
Institude of Applied Mechanics and Mechatronics, Slovak University of Technology, Námestie Slobody 17, 81231 Bratislava, Slovakia.
The paper presents the original results of cyclic testing of materials that are identical in chemical composition but produced by two different technologies: conventional metallurgy and additive manufacturing. For the aluminium alloy AlSi10Mg and the austenitic steel 316L, tensile curves, tension-compression and torsion alternating fatigue curves are experimentally obtained and presented. The experimental results are compared for two fabrication technologies-conventional metallurgy and additive DLMS technology.
View Article and Find Full Text PDFBiomed Tech (Berl)
December 2024
Department of Trauma Surgery and Orthopedics, Clinical Centre Stuttgart-Katharinenhospital, Stuttgart, Germany.
Objectives: Helical plating is an established method for treating proximal humeral shaft fractures, mitigating the risk of iatrogenic radial nerve damage. However, biomechanical test data on helical plates under physiological load condition is limited. Hence, the aim of this study was to compare the biomechanical performance of helical and straight PHILOS Long plates in AO12C2 fractures using static and cyclic implant system testing.
View Article and Find Full Text PDFJ Orthop Res
November 2024
Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland.
Helical plates used for proximal humeral shaft fracture fixation avoid the radial nerve distally as compared to straight plates. To investigate in a human cadaveric model the biomechanical competence of straight lateral plates versus 45° helical plates used for fixation of proximal comminuted humeral shaft fractures, eight pairs of human cadaveric humeri were instrumented using either a long straight PHILOS plate (Group 1) or a 45° helical plate (Group 2) for treatment of an unstable proximal humeral shaft fracture. All specimens were tested under non-destructive quasi-static loading in axial compression, internal and external rotation, and bending in four directions.
View Article and Find Full Text PDFBioengineering (Basel)
October 2024
Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
J Mech Behav Biomed Mater
December 2024
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA. Electronic address:
Synthetic bone models have increasing utility in orthopaedic research due to their low cost and low variability and have been shown to be biomechanically equivalent to human bones in a variety of ways. The rise in additive manufacturing (AM) for orthopaedic applications presents an opportunity to construct synthetic whole-bone models for biomechanical testing applications, but there is a lack of research comparing these AM models to cadaveric or commercially available bone surrogates. This study compares the mechanical properties of 3D printed clavicle models to commercially available (4th generation Sawbones) and human cadaveric clavicles via nondestructive cyclic 4-point bending, axial compression, and torsion, and a final axial compression test to failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!