Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.

J Nanosci Nanotechnol

Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China.

Published: August 2018

Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2018.15441DOI Listing

Publication Analysis

Top Keywords

mesoporous g-c3n4
16
g-c3n4 nanosheet
16
adsorption capacity
12
superior adsorption
8
capacity photocatalytic
8
photocatalytic activity
8
g-c3n4
6
mesoporous
5
mesoporous g-c₃n₄
4
g-c₃n₄ nanosheets
4

Similar Publications

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF

2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-CN-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride.

Biosensors (Basel)

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.

In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.

View Article and Find Full Text PDF

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFeO@g-CN heterojunctions were developed by embedding p-type NiFeO nanoparticles (NPs) within n-type porous ultrathin g-CN (p-uCN) nanosheets. The optimized NiFeO@g-CN, loaded with 20 wt % magnetic counterparts, exhibits exceptional photocatalytic methylene blue (MB) degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

In this work, we have described the synthesis of vanadium (V) nanoparticles (NPs) anchored on mesoporous graphitic carbon nitride (V@mpg-CN) and their uses in photocatalytic ethylbenzene oxidation to the respective acetophenones. The mpg-CN serves as the support for the decoration of V NPs, through a simple impregnation method. Various advanced techniques, such as XRD, UV-vis spectrometry, HRTEM, HAADF-STEM, AC-STEM, elemental mapping, and BET surface area analysis, were employed for the characterization of V@mpg-CN.

View Article and Find Full Text PDF
Article Synopsis
  • Development of effective methods for pesticide detection in food and environment is crucial, highlighting the need for ECL sensing platforms resistant to interference and contamination.
  • This study introduces an innovative ECL sensing system using graphitic carbon nitride nanosheets combined with a vertically ordered mesoporous silica film on a glassy carbon electrode, designed for detecting pollutants like 2,4,6-trichlorophenol (TCP) and the insecticide prochloraz.
  • The sensor demonstrates high sensitivity, with detection limits as low as 2.2 nM for TCP and successfully identifies prochloraz indirectly by measuring TCP levels, effectively working in real samples like pond water and orange peel extract.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!