Background: Simultaneous consideration of two neuropathological traits related to Alzheimer's disease (AD) has not been attempted in a genome-wide association study.

Methods: We conducted genome-wide pleiotropy analyses using association summary statistics from the Beecham et al. study (PLoS Genet 10:e1004606, 2014) for AD-related neuropathological traits, including neuritic plaque (NP), neurofibrillary tangle (NFT), and cerebral amyloid angiopathy (CAA). Significant findings were further examined by expression quantitative trait locus and differentially expressed gene analyses in AD vs. control brains using gene expression data.

Results: Genome-wide significant pleiotropic associations were observed for the joint model of NP and NFT (NP + NFT) with the single-nucleotide polymorphism (SNP) rs34487851 upstream of C2orf40 (alias ECRG4, P = 2.4 × 10) and for the joint model of NFT and CAA (NFT + CAA) with the HDAC9 SNP rs79524815 (P = 1.1 × 10). Gene-based testing revealed study-wide significant associations (P ≤ 2.0 × 10) for the NFT + CAA outcome with adjacent genes TRAPPC12, TRAPPC12-AS1, and ADI1. Risk alleles of proxy SNPs for rs79524815 were associated with significantly lower expression of HDAC9 in the brain (P = 3.0 × 10), and HDAC9 was significantly downregulated in subjects with AD compared with control subjects in the prefrontal (P = 7.9 × 10) and visual (P = 5.6 × 10) cortices.

Conclusions: Our findings suggest that pleiotropy analysis is a useful approach to identifying novel genetic associations with complex diseases and their endophenotypes. Functional studies are needed to determine whether ECRG4 or HDAC9 is plausible as a therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819208PMC
http://dx.doi.org/10.1186/s13195-018-0349-zDOI Listing

Publication Analysis

Top Keywords

neuropathological traits
12
nft caa
12
genome-wide pleiotropy
8
pleiotropy analysis
8
traits alzheimer's
8
alzheimer's disease
8
joint model
8
model nft
8
nft
6
genome-wide
4

Similar Publications

Multi-scale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence from Cushing's Disease.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:

Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.

View Article and Find Full Text PDF

Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations.

Metab Brain Dis

January 2025

Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.

SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC).

View Article and Find Full Text PDF

Neuropathological features of cerebrovascular diseases.

Pathology

November 2024

Institutionen för kliniska vetenskaper, Lunds Universitet, Klinisk Patologi & Medicinsk Service, Region Skåne, Lund, Sweden.

Optimal blood flow through a patent cerebral circulation is critical for supply of oxygen and nutrients for brain function. The integrity of vascular elements within arterial vessels of any calibre can be compromised by various disease processes. Pathological changes in the walls of veins and the venous system may also alter the dynamics of cerebral perfusion.

View Article and Find Full Text PDF

Background: Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.

View Article and Find Full Text PDF

Charting the shared genetic architecture of Alzheimer's disease, cognition, and educational attainment, and associations with brain development.

Neurobiol Dis

December 2024

Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway. Electronic address:

The observation that the risk of developing Alzheimer's disease is reduced in individuals with high premorbid cognitive functioning, higher educational attainment, and occupational status has led to the 'cognitive reserve' hypothesis. This hypothesis suggests that individuals with greater cognitive reserve can tolerate a more significant burden of neuropathological changes before the onset of cognitive decline. The underpinnings of cognitive reserve remain poorly understood, although a shared genetic basis between measures of cognitive reserve and Alzheimer's disease has been suggested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!