During macroautophagy/autophagy, mammalian Atg8-family proteins undergo 2 proteolytic processing events. The first exposes a COOH-terminal glycine used in the conjugation of these proteins to lipids on the phagophore, the precursor to the autophagosome, whereas the second releases the lipid. The ATG4 family of proteases drives both cleavages, but how ATG4 proteins distinguish between soluble and lipid-anchored Atg8 proteins is not well understood. In a fully reconstituted delipidation assay, we establish that the physical anchoring of mammalian Atg8-family proteins in the membrane dramatically shifts the way ATG4 proteases recognize these substrates. Thus, while ATG4B is orders of magnitude faster at processing a soluble unprimed protein, all 4 ATG4 proteases can be activated to similar enzymatic activities on lipid-attached substrates. The recognition of lipidated but not soluble substrates is sensitive to a COOH-terminal LIR motif both in vitro and in cells. We suggest a model whereby ATG4B drives very fast priming of mammalian Atg8 proteins, whereas delipidation is inherently slow and regulated by all ATG4 homologs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103404 | PMC |
http://dx.doi.org/10.1080/15548627.2018.1437341 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.
View Article and Find Full Text PDFCytokine Growth Factor Rev
December 2024
Department of Blood Transfusion, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China. Electronic address:
Microtubule-associated protein 1 light chain 3B (MAP1LC3B, also known as LC3B) is a mammalian homolog of the autophagy-related protein 8 (ATG8) family. It plays a crucial role in cellular autophagy and is involved in several vital biological processes, including apoptosis and differentiation. Additionally, LC3B regulates immune responses.
View Article and Find Full Text PDFAutophagy
December 2024
Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
Macroautophagy/autophagy, an evolutionarily conserved cellular degradation pathway, involves phagophores that sequester cytoplasmic constituents and mature into autophagosomes for subsequent lysosomal delivery. The gene family, comprising the and subfamilies in mammals, encodes ubiquitin-like proteins that are conjugated to phagophore membranes during autophagosome biogenesis. A central question in the field is how Atg8-family proteins are precisely involved in autophagosome formation, which remains controversial and challenging, at least in part due to the short lifespan of phagophores.
View Article and Find Full Text PDFEMBO J
November 2024
Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria.
View Article and Find Full Text PDFAutophagy
January 2025
College of Life Sciences, Zhejiang Normal University, Jinhua, China.
Extensive interconnection has been established between clathrin-mediated endocytosis (CME) and the macroautophagy/autophagy pathway in yeast and mammals. However, the evidence that connects these two pathways in plants has been limited. Starting from the phenotypic similarities in carbon starvation and immune responses shared between the double mutant of CLC2 (clathrin light chain 2) and , , and the mutant in Arabidopsis, we found that the autophagy pathway is compromised in the mutant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!