The aim of this paper is to describe the development of an innovative bachelor's degree program for physiotherapy directly affiliated with the medical department, which is a unique approach to making physiotherapy an academic course in Germany. The previous system for qualifying as a physiotherapist was amended by the adaption of qualification objectives resulting in a model that links scientific and vocational knowledge from the beginning of the study. Several lectures support interprofessionality. The vocational training is fully integrated into the curriculum. The exemplary concept is monitored by an extensive quality management program. The approach meets general recommendations of experts and can serve as a model for other universities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0044-100040 | DOI Listing |
Anal Chem
January 2025
College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
Abnormal ferrous ion (Fe) levels lead to an increase in reactive oxygen species (ROS) in cells, disrupting intracellular viscosity and the occurrence of hepatocellular carcinoma (HCC). Simultaneously visualizing Fe and intracellular viscosity is essential for understanding the detailed pathophysiological processes of HCC. Herein, we report the first dual-responsive probe, , capable of simultaneously monitoring Fe and viscosity.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.
Superconducting hydrides exhibiting a high critical temperature () under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high- superconducting hydrides that can be stabilized at lower or even ambient pressures.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.
Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!