A majority of metal-organic frameworks (MOFs) fail to preserve their physical and chemical properties after exposure to acidic, neutral, or alkaline aqueous solutions, therefore limiting their practical applications in many areas. The strategy demonstrated herein is the design and synthesis of an organic ligand that behaves as a buffer to drastically boost the aqueous stability of a porous MOF (JUC-1000), which maintains its structural integrity at low and high pH values. The local buffer environment resulting from the weak acid-base pairs of the custom-designed organic ligand also greatly facilitates the performance of JUC-1000 in the chemical fixation of carbon dioxide under ambient conditions, outperforming a series of benchmark catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201801122DOI Listing

Publication Analysis

Top Keywords

local buffer
8
buffer environment
8
carbon dioxide
8
organic ligand
8
stable metal-organic
4
metal-organic framework
4
framework featuring
4
featuring local
4
environment carbon
4
dioxide fixation
4

Similar Publications

Chitosan-based dihydromyricetin composite hydrogel demonstrating sustained release and exceptional antibacterial activity.

Int J Biol Macromol

December 2024

Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China. Electronic address:

Plant-derived antibacterial agents are increasingly pivotal in mitigating the escalating threat posed by pathogenic microorganisms. Dihydromyricetin (DMY), a plant bioactive compound prevalent in Ampelopsis grossedentata, exhibits remarkable antibacterial properties. However, its poor solubility in water significantly hinders its application in antibacterial therapies, necessitating the exploration of suitable carriers for the loading and sustained release of DMY.

View Article and Find Full Text PDF

Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.

View Article and Find Full Text PDF

Influence of Gold Nanoparticles on eNOS Localization in Gill Tissues: Advancements in Immunofluorescence Techniques.

ACS Omega

December 2024

Laboratoire de Recherche: Caractérisations, Applications et Modélisation de Matériaux, Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis 2092, Tunisia.

This study optimizes immunofluorescence techniques using gold nanoparticles (AuNPs) to improve visualization of endothelial nitric oxide synthase (eNOS) in gill tissue. Two types of AuNP dispersions, stabilized in phosphate buffered saline (PBS) and citrate buffer (CB), were evaluated for their imaging performance. AuNPs suspended in PBS provided significantly better optical contrast due to uniform distribution and effective tissue attachment, whereas citrate-suspended AuNPs exhibited aggregation, resulting in reduced contrast.

View Article and Find Full Text PDF

Unlabelled: Molecular crowding influences DNA mechanics and DNA - protein interactions and is ubiquitous in living cells. Quantifying the effects of molecular crowding on DNA supercoiling is essential to relating experiments to DNA supercoiling. We use single molecule magnetic tweezers to study DNA supercoiling in the presence of dehydrating or crowding co-solutes.

View Article and Find Full Text PDF

Recent advances in optical sensing technologies underpin the development of high-performance, surface-sensitive analytical tools capable of reliable and precise detection of molecular targets in complex biological media in non-laboratory settings. Optical fibre sensors guide light to and from a region of interest, enabling sensitive measurements of localized environments. This positions optical fibre sensors as a highly promising technology for a wide range of biochemical and healthcare applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!