Objective: Osteoarthritis (OA) affects humans and several other animals. Thus, the mechanisms underlying this disorder, such as specific skeletal tissue DNA methylation patterns, may be evolutionary conserved. However, associations between methylation and OA have not been readily studied in nonhuman animals. Baboons serve as important models of disease and develop OA at rates similar to those in humans. Therefore, this study investigated the associations between methylation and OA in baboons to advance the evolutionary understanding of OA.

Design: Trabecular bone and cartilage was collected from the medial condyles of adult female baboon femora, 5 with and 5 without knee OA. The Infinium HumanMethylation450 BeadChip (450K array) was used to identify DNA methylation patterns in these tissues.

Results: Approximately 44% of the 450K array probes reliably align to the baboon genome, contain a CpG site of interest, and maintain a wide distribution throughout the genome. Of the 2 filtering methods tested, both identified significantly differentially methylated positions (DMPs) between healthy and OA individuals in cartilage tissues, and some of these patterns overlap with those previously identified in humans. Conversely, no DMPs were found between tissue types or between disease states in bone tissues.

Conclusions: Overall, the 450K array can be used to measure genome-wide DNA methylation in baboon tissues and identify significant associations with complex traits. The results of this study indicate that some DNA methylation patterns associated with OA are evolutionarily conserved, while others are not. This warrants further investigation in a larger and more phylogenetically diverse sample set.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585300PMC
http://dx.doi.org/10.1177/1947603518759173DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
methylation patterns
16
450k array
12
bone cartilage
8
associations methylation
8
methylation
7
patterns
5
assessment dna
4
patterns bone
4
cartilage nonhuman
4

Similar Publications

Using Multi-Omics Methods to Understand Gouty Arthritis.

Curr Rheumatol Rev

January 2025

Department of Rheumatology, Beijing Jishuitan Hospital, Guizhou Hospital, China.

Gouty arthritis is a common arthritic disease caused by the deposition of monosodium urate crystals in the joints and the tissues around it. The main pathogenesis of gout is the inflammation caused by the deposition of monosodium urate crystals. Omics studies help us evaluate global changes in gout during recent years, but most studies used only a single omics approach to illustrate the mechanisms of gout.

View Article and Find Full Text PDF

Bioinformatics Analysis Reveals Microrchidia Family Genes as the Prognostic and Therapeutic Markers for Colorectal Cancer.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.

Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).

Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.

View Article and Find Full Text PDF

The ANZSNP scientific meeting 2024 was held in the scenic city of Queenstown, New Zealand on 31 August and September 1. Dr Fouzia Ziad, President of the ANZSNP and Dr Laveniya Satgunaseelan, Secretary /Treasurer of the ANZSNP were the convenors of the meeting. The meeting was co-badged with the Australasian Winter Conference on Brain Research (AWCBR) 2024.

View Article and Find Full Text PDF

Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!