Gold nanorods (GNRs) coated with a single kind of ligand show thermoreponsive two-step assembly to provide a hierarchical structure. The GNRs (33 nm in length × 14 nm in diameter) coated with a hexa(ethylene glycol) (HEG) derivative form side-by-side assemblies at 30 °C (T ) as a steady state through dehydration. By further heating to over 40 °C (T ), larger assemblies, which are composed of the side-by-side assembled units, are formed as hierarchical structures. The dehydration temperature of the HEG derivative varies depending on the free volume of the HEG unit, which corresponds to the curvature of the GNRs. Upon heating, dehydration first occurs from the ligands on the side portions with a lower curvature, and then from the ligands on the edge portions with a higher curvature. The different sized GNRs (33 × 8 and 54 × 15 nm) also show two-step assembly. Both the T and T are dependent on the diameter of the GNRs, but independent of their length. This result supports that the dehydration is dependent on the free volume, which corresponds to the curvature. Anisotropic assembly focusing on differences in curvature provides new guidelines for the fabrication of hierarchical structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201704230 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Zhengzhou University, College of Chemistry and Molecular Engineering, No.100 Science Avenue, Zhengzhou City, Henan Province P.R.China., Zhengzhou, Henan, CHINA.
We report a two-step approach to fabricate CsPbBr3 superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the µm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the µm-scale wires bundles and the chiral properties of the sample (glum = 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Electronic address:
Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea.
Covalent organic nanotubes offer enhanced stability, robustness, and functionality, compared to their noncovalent counterparts. This study explores constructing polydiacetylene (PDA) nanotubes using a two-step process: self-assembly via noncovalent interactions followed by UV-induced polymerization of a diacetylene template. A promising building block consisting of a hydrogen-bonding headgroup, barbituric acid, linked to a linear diacetylene chain was prepared.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
β-Amino acids serve as crucial building blocks for a broad range of biologically active molecules and peptides with potential as peptidomimetics. While numerous methods have been developed for the synthesis of β-amino acids, most of them require multistep preparation of specific reagents and substrates, which limits their synthetic practicality. In this regard, a homologative transformation of abundant and readily available α-amino acids would be an attractive approach for β-amino acid synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!