Pseudohalide-Induced 2D (CH NH ) PbI (SCN) Perovskite for Ternary Resistive Memory with High Performance.

Small

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China.

Published: March 2018

Recently, organic-inorganic hybrid perovskites (OIHP) are studied in memory devices, but ternary resistive memory with three states based on OIHP is not achieved yet. In this work, ternary resistive memory based on hybrid perovskite is achieved with a high device yield (75%), much higher than most organic ternary resistive memories. The pseudohalide-induced 2D (CH NH ) PbI (SCN) perovskite thin film is prepared by using a one-step solution method and fabricated into Al/perovskite film/indium-tin oxide (glass substrate as well as flexible polyethylene terephthalate substrate) random resistive access memory (RRAM) devices. The three states have a conductivity ratio of 1:10 :10 , long retention over 10 000 s, and good endurance properties. The electrode area variation, impedance test, and current-voltage plotting show that the two resistance switches are attributable to the charge trap filling due to the effect of unscreened defect in 2D nanosheets and the formation of conductive filaments, respectively. This work paves way for stable perovskite multilevel RRAMs in ambient atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201703667DOI Listing

Publication Analysis

Top Keywords

ternary resistive
16
resistive memory
12
pseudohalide-induced pbi
8
pbi scn
8
scn perovskite
8
three states
8
resistive
5
memory
5
perovskite
4
ternary
4

Similar Publications

Synergistic design of dual S-scheme heterojunction CuO/NiAl-LDH@MIL-53(Fe) for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 PR China.

The development of heterojunctions is a proven strategy to augment the photocatalytic efficiency of materials. However, the enhancement in charge transfer facilitated by a single heterojunction is inherently constrained. To overcome these limitations, we synthesized a dual S-scheme heterojunction ternary composite photocatalyst, CuO/NiAl-LDH@MIL-53(Fe), designed for efficient visible-light-driven hydrogen (H) production.

View Article and Find Full Text PDF

Superhydrophobic and Self-Healing Porous Organic Macrocycle Crystals for Methane Purification under Humid Conditions.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.

Purifying methane from natural gas using adsorbents not only requires the adsorbents to possess excellent separation performance but also to overcome additional daunting challenges such as humidity interference and durability requirements for sustainable use. Herein, porous organic crystals of a new macrocycle () with superhydrophobic and self-healing features are prepared and employed for the purification of methane (>99.99% purity) from ternary methane/ethane/propane mixtures under 97% relative humidity.

View Article and Find Full Text PDF

Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.

Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Memristive ternary Łukasiewicz logic based on reading-based ratioed resistive states (3R).

Philos Trans A Math Phys Eng Sci

January 2025

Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.

The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!