Discovery of Tetralones as Potent and Selective Inhibitors of Acyl-CoA:Diacylglycerol Acyltransferase 1.

ACS Med Chem Lett

Virtual Proof of Concept Discovery Performance Unit, Alternative Discovery and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States.

Published: February 2018

Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) plays an important role in triglyceride synthesis and is a target of interest for the treatment of metabolic disorders. Herein we describe the structure-activity relationship of a novel tetralone series of DGAT1 inhibitors and our strategies for overcoming genotoxic liability of the anilines embedded in the chemical structures, leading to the discovery of a candidate compound, ()-2-(6-(5-(3-(3,4-difluorophenyl)ureido)pyrazin-2-yl)-1-oxo-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetic acid (GSK2973980A, ). Compound is a potent and selective DGAT1 inhibitor with excellent DMPK profiles and efficacy in a postprandial lipid excursion model in mice. Based on the overall biological and developability profiles and acceptable safety profiles in the 7-day toxicity studies in rats and dogs, compound was selected as a candidate compound for further development in the treatment of metabolic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807866PMC
http://dx.doi.org/10.1021/acsmedchemlett.7b00450DOI Listing

Publication Analysis

Top Keywords

potent selective
8
acyl-coadiacylglycerol acyltransferase
8
treatment metabolic
8
metabolic disorders
8
candidate compound
8
discovery tetralones
4
tetralones potent
4
selective inhibitors
4
inhibitors acyl-coadiacylglycerol
4
acyltransferase acyl-coadiacylglycerol
4

Similar Publications

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field.

View Article and Find Full Text PDF

Fine-Tuning NIR-Absorbing BODIPYs for Photoacoustic Detection of Hypochlorous Ion (OCl⁻).

Chem Asian J

January 2025

Rheinisch-Westfalische Technische Hochschule Aachen, Organic Chemistry, Landoltw, 52074, Aachen, GERMANY.

Highly reactive oxygen and nitrogen species (ROS/RNS) play crucial roles in various pathological conditions. Among them, hypochlorous ion (OCl⁻), a potent ROS, is associated in numerous oxidative stress-related disorders. Elevated levels of OCl⁻ are thus recognized as a biomarker for diagnosing inflammatory conditions.

View Article and Find Full Text PDF

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

The rise of drug-resistant fungal pathogens, including , highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening and revealed novel lipopeptaibiotics, coniotins, from WAC11161, which were undetectable in crude extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!