Naringin ameliorates endothelial dysfunction in fructose-fed rats.

Exp Ther Med

Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.

Published: March 2018

High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795702PMC
http://dx.doi.org/10.3892/etm.2018.5759DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
fructose-fed rats
12
dysfunction fructose-fed
8
rats
8
drinking water
8
fructose fed
8
fed rats
8
blood glucose
8
enos p-enos
8
aortae fructose
8

Similar Publications

: Retinal vein occlusion (RVO) is a relatively uncommon condition with a complex pathophysiology. However, its association with traditional cardiovascular risk factors is well established. In this study, we compared arterial stiffness and endothelial function between patients with RVO and healthy controls.

View Article and Find Full Text PDF

Glycated Hemoglobin and Cardiovascular Disease in Patients Without Diabetes.

J Clin Med

December 2024

Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland.

Cardiovascular diseases (CVDs) are one of the most critical public health problems in the contemporary world because they are the leading cause of morbidity and mortality. Diabetes mellitus (DM) is one of the most substantial risk factors for developing CVDs. Glycated hemoglobin is a product of the non-enzymatic glycation of hemoglobin present in erythrocytes.

View Article and Find Full Text PDF

Background: There is compelling evidence of an inverse association between potassium intake and blood pressure (BP). A potential mechanism for this effect may be dietary potassium-mediated augmentation of endothelium-dependent relaxation. To date, studies have investigated potassium intake supplementation over several weeks in healthy volunteers with variable results on vascular function.

View Article and Find Full Text PDF

Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (HCys) levels, is associated with increased risks of neurovascular diseases such as stroke or hydrocephalus. HHcy promotes oxidative stress, neuroinflammation, and endothelial dysfunction, disrupting the blood-brain barrier and accelerating neurodegeneration. These processes highlight HCys as both a biomarker and a potential therapeutic target in vascular-related neurological disorders.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!