AI Article Synopsis

  • High throughput gene-expression data requires pre-processing to address noise, with normalization being crucial to eliminate systematic variations across arrays.
  • The choice of normalization method can significantly influence which genes are identified as rhythmic, impacting results in toxicological and pharmacological studies.
  • The paper presents a new rhythmicity measure and a bootstrap method to identify truly rhythmic genes, demonstrating that this approach is robust across different normalization methods.

Article Abstract

Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801422PMC
http://dx.doi.org/10.3389/fgene.2018.00024DOI Listing

Publication Analysis

Top Keywords

choice normalization
20
normalization method
20
robust choice
12
normalization methods
12
rhythmic genes
12
proposed methodology
12
normalization
9
measure robust
8
circadian clock
8
rhythmicity gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!