A magnetic resonance imaging framework for quantifying intervertebral disc deformation in vivo: Reliability and application to diurnal variations in lumbar disc shape.

J Biomech

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States. Electronic address:

Published: April 2018

Low back pain is a significant socioeconomic burden in the United States and lumbar intervertebral disc degeneration is frequently implicated as a cause. The discs play an important mechanical role in the spine, yet the relationship between disc function and back pain is poorly defined. The objective of this work was to develop a technique using magnetic resonance imaging (MRI) and three-dimensional modeling to measure in vivo disc deformations. Using this method, we found that disc geometry was measurable with precision less than the in-plane dimensions of a voxel (≈100 µm, 10% of the MRI pixel size). Furthermore, there was excellent agreement between mean disc height, disc perimeter, disc volume and regional disc height measurements for multiple trials from an individual rater (standard deviation <3.1% across all measurements) and between mean height, perimeter, and volume measurements made by two independent raters (error <1.5% across all measurements). We then used this measurement system to track diurnal deformations in the L5-S1 disc in a young, healthy population (n = 8; age 24.1 ± 3.3 yrs; 2 M/6F). We measured decreases in the mean disc height (-8%) and volume (-9%) with no changes in perimeter over an eight-hour workday. We found that the largest height losses occurred in the posterior (-13%) and posterior-lateral (-14%) regions adjacent to the outer annulus fibrosus. Diurnal annulus fibrosus (AF) strains induced by posterior and posterior-lateral height loss may increase the risk for posterior disc herniation or posterior AF tears. These preliminary findings lay a foundation for determining how deviations from normal deformations may contribute to back pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878126PMC
http://dx.doi.org/10.1016/j.jbiomech.2018.01.045DOI Listing

Publication Analysis

Top Keywords

disc
10
magnetic resonance
8
resonance imaging
8
intervertebral disc
8
disc height
8
imaging framework
4
framework quantifying
4
quantifying intervertebral
4
disc deformation
4
deformation vivo
4

Similar Publications

Aging is a risk factor for several chronic conditions, including intervertebral disc degeneration and associated back pain. Disc pathologies include loss of reticular-shaped nucleus pulposus cells, disorganization of annulus fibrosus lamellae, reduced disc height, and increased disc bulging. Sonic hedgehog, cytokeratin 19, and extracellular matrix proteins are markers of healthy disc.

View Article and Find Full Text PDF

Compartmental analysis of retinal vascular parameters and thickness in myopic eyes using SS-OCTA.

Front Med (Lausanne)

December 2024

Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Background: This study aimed to comprehensively explore the thickness and topographic distributions of retinal vessel alterations of different myopic eyes by using swept-source OCT angiography (SS-OCTA).

Methods: One hundred myopes were included in this observational cross-sectional study. All participants underwent a series of ocular examinations of biometrical parameters, including spherical equivalent refraction (SER), axial length (AL), intraocular pressure (IOP), curvature radius (CR), and others.

View Article and Find Full Text PDF

Introduction: The normative relationship between lumbar intervertebral disc space height (DSH) and neuroforaminal dimensions (NFD) has yet to be defined.

Research Question: The purpose of this study was to investigate the relationship between lumbar DSH and NFD using computed tomography (CT), accounting for influences of patient demographic and anthropometric characteristics.

Materials And Methods: We analyzed CT imaging of 350 female and 350 male patients.

View Article and Find Full Text PDF

Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration.

Mater Today Bio

February 2025

Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China.

Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP).

View Article and Find Full Text PDF

A rare case of spondylodiscitis.

IDCases

December 2024

Division of Infectious Diseases, Department of Medicine, University of Kansas, Kanas City, KS, USA.

A 55-year-old-male with a chronic left uretero-pelvic junction (UPJ) obstruction managed with intermittent stent exchanges presented with low midline back pain. CT Abdomen/Pelvis revealed spondylodiscitis at L4-L5, further demonstrated on MRI Lumbar spine. Imaging also revealed the left nephro-ureteral stent was mispositioned, with some mild wall thickening of the left ureter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!