Synthetic strigolactone analogues reveal anti-cancer activities on hepatocellular carcinoma cells.

Bioorg Med Chem Lett

Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan. Electronic address:

Published: April 2018

Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2018.02.016DOI Listing

Publication Analysis

Top Keywords

sls analogues
16
tit3 tit7
16
cancer cell
12
hepatocellular carcinoma
8
cell lines
8
effects cancer
8
cell proliferation
8
analogues tit3
8
cancer cells
8
analogues
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!