Aerobic glycolysis (the Warburg effect) facilitates tumor growth, and drugs targeting aerobic glycolysis are being developed. However, how the Warburg effect is directly regulated is largely unknown. Here we show that transcription factor SIX1 directly increases the expression of many glycolytic genes, promoting the Warburg effect and tumor growth in vitro and in vivo. SIX1 regulates glycolysis through HBO1 and AIB1 histone acetyltransferases. Cancer-related SIX1 mutation increases its ability to promote aerobic glycolysis and tumor growth. SIX1 glycolytic function is directly repressed by microRNA-548a-3p, which is downregulated, inversely correlates with SIX1, and is a good predictor of prognosis in breast cancer patients. Thus, the microRNA-548a-3p/SIX1 axis strongly links aerobic glycolysis to carcinogenesis and may become a promising cancer therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2018.01.010DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
16
tumor growth
12
six1
6
glycolysis
5
transcriptional regulation
4
warburg
4
regulation warburg
4
warburg cancer
4
cancer six1
4
aerobic
4

Similar Publications

Infection-induced lysine lactylation enables herpesvirus immune evasion.

Sci Adv

January 2025

Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.

Aerobic glycolysis is a hallmark of many viral infections, leading to substantial accumulation of lactate. However, the regulatory roles of lactate during viral infections remain poorly understood. Here, we report that human cytomegalovirus (HCMV) infection leverages lactate to induce widespread protein lactylation and promote viral spread.

View Article and Find Full Text PDF

Mitochondrial dysfunction is implicated in the pathogenesis of the neurological condition autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), yet precisely how the mitochondrial metabolism is affected is unknown. Thus, to better understand changes in the mitochondrial metabolism caused by loss of the sacsin protein (encoded by the SACS gene, which is mutated in ARSACS), we performed mass spectrometry-based tracer analysis, with both glucose- and glutamine-traced carbon. Comparing the metabolite profiles between wild-type and sacsin-knockout cell lines revealed increased reliance on aerobic glycolysis in sacsin-deficient cells, as evidenced by the increase in lactate and reduction of glucose.

View Article and Find Full Text PDF

Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain.

View Article and Find Full Text PDF

(EL) is a wild fruit known for containing several health-promoting compounds. This study aimed to evaluate the effects of EL fruit extract on high-fat diet (HFD)-induced obesity and lipopolysaccharide (LPS)-activated macrophages. Mice fed an HFD and given EL fruit extract for 10 weeks exhibited significantly lower body weight, reduced lipid accumulation, diminished oxidative stress in adipocytes, and decreased macrophage infiltration compared to those not receiving the EL extract.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!