This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2018.02.005 | DOI Listing |
J Vis
January 2025
Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.
View Article and Find Full Text PDFFront Hum Neurosci
January 2025
Student Affairs Office, Guilin Normal College, Guilin, China.
Introduction: Attention classification based on EEG signals is crucial for brain-computer interface (BCI) applications. However, noise interference and real-time signal fluctuations hinder accuracy, especially in portable single-channel devices. This study proposes a robust Kalman filtering method combined with a norm-constrained extreme learning machine (ELM) to address these challenges.
View Article and Find Full Text PDFFront Neurorobot
January 2025
Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou, China.
Introduction: Tracking the hidden states of dynamic systems is a fundamental task in signal processing. Recursive Kalman Filters (KF) are widely regarded as an efficient solution for linear and Gaussian systems, offering low computational complexity. However, real-world applications often involve non-linear dynamics, making it challenging for traditional Kalman Filters to achieve accurate state estimation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control.
View Article and Find Full Text PDFISA Trans
December 2024
State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, School of Automation, Beijing, China.
This paper investigates the initial dynamic docking problem to mobile and trajectory-disturbed targets for tracking and recovering drones by Unmanned Ground Vehicles (UGVs). First, the target status is estimated by employing the Extended Kalman Filter (EKF). Then, the drone's perturbation is mapped to a dynamic docking point, quantifying the target motion deviation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!