The role of RICTOR downstream of receptor tyrosine kinase in cancers.

Mol Cancer

INSERM, U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, F-75010, 1 avenue Claude Vellefaux, 75475 Paris cedex 10, Paris, France.

Published: February 2018

The importance of the network defined by phosphatidylinositol-3-kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) downstream of Receptor Tyrosine Kinase (RTK) has been known for many years but the central role of RICTOR (rapamycin-insensitive companion of mTOR) in this pathway is only starting to emerge. RICTOR is critical for mTORC2 (the mammalian target of rapamycin complex 2) kinase activity and as such plays a key role downstream of RTK. Alterations of RICTOR have been identified in a number of cancer cell types and its involvement in tumorigenesis has begun to be unraveled recently. Here, we summarize new research into the biology of RICTOR signaling in cancers focusing on tumors with altered RTK. We show that, as a key signaling node and critical effector of RTKs, RICTOR is becoming a valuable therapeutic target in cancer with altered RTK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817857PMC
http://dx.doi.org/10.1186/s12943-018-0794-0DOI Listing

Publication Analysis

Top Keywords

role rictor
8
downstream receptor
8
receptor tyrosine
8
tyrosine kinase
8
mammalian target
8
target rapamycin
8
altered rtk
8
rictor
5
rictor downstream
4
kinase cancers
4

Similar Publications

mTOR Ser1261 is an AMPK-dependent phosphosite in mouse and human skeletal muscle not required for mTORC2 activity.

FASEB J

January 2025

August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.

The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models.

View Article and Find Full Text PDF

Populations of proliferating cells such as stem cells and tumors are often nutrient responsive. Highly conserved signaling pathways communicate information about the surrounding environmental, organismal, and cellular nutrient conditions. One such pathway is the Target of Rapamycin (TOR) pathway.

View Article and Find Full Text PDF

RICTOR variants are associated with neurodevelopmental disorders.

Eur J Hum Genet

December 2024

Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, 4 rue Kirschleger, 67085, Strasbourg, France.

RICTOR is a key component of the mTORC2 signaling complex which is involved in the regulation of cell growth, proliferation and survival. RICTOR is highly expressed in neurons and is necessary for brain development. Here, we report eight unrelated patients presenting with intellectual disability and/or development delay and carrying variants in the RICTOR gene.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation.

View Article and Find Full Text PDF

Objective: We aim to explore the role of mechanistic target of rapamycin complex (mTORC) 2 in systemic lupus erythematosus (SLE) development, the in vivo regulation of mTORC2 by type I interferon (IFN) signaling in autoimmunity, and to use mTORC2 targeting therapy to ameliorate lupus-like symptoms in an in vivo lupus mouse model and an in vitro coculture model using human PBMCs.

Method: We first induced lupus-like disease in T cell specific Rictor, a key component of mTORC2, deficient mice by topical application of imiquimod (IMQ) and monitored disease development. Next, we investigated the changes of mTORC2 signaling and immunological phenotypes in type I IFNAR deficient Lpr mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!