Purpose: Lacrimal gland (LG) dysfunction leading to dry eye syndrome (DES) is an important cause of ocular morbidity. One of the potential and promising long-term management therapies for restoration of LG function could be transplantation of autologous ex vivo expanded stem cells. The present study was aimed at exploring the 2D and 3D cultures of human LG, identifying inherent stem cells and evaluating their secretory potential.

Methods: Fresh human lacrimal gland (HuLG) (n = 5) from patients undergoing therapeutic exenteration was harvested after ethical approval and informed consent. The gland was enzymatically digested and the isolated cells plated in Hepato-STIM media supplemented with l-glutamine, epidermal growth factor, fibroblast growth factor, and N-2 supplement. The native HuLG and the cultured spheres (DIV14-16) were evaluated for presence of stem cells (CD117 expression, quiescence, BrdU label retention, cell cycle, colony forming efficiency) and differentiation (secretion of tear proteins).

Results: Under the established culture conditions, suspension 3D cultures of human "lacrispheres" could be maintained and propagated for 3-4 weeks. The spheres consist of both acinar as well as ductal cells with evidence of stem cells (0.8 ± 0.05% CD117 cells), BrdU label retention (9.31 ± 0.41%), G0/G1 profile similar to native lacrimal cells at isolation (76.9 versus 79.9%) and colony forming units (3.1%). The lacrispheres also secreted quantifiable levels of tear proteins (lysozyme, lactoferrin, scIgA) into the conditioned media.

Conclusion: The study provides promising, first-of-its-kind evidence for the generation of lacrispheres from fresh HuLG, with enriched population of stem cells and secretory competent differentiated cells. The dual properties of these spheres make them a highly suitable source of transplantable cells for restoring the structure and function of damaged lacrimal gland.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-018-3926-8DOI Listing

Publication Analysis

Top Keywords

stem cells
20
lacrimal gland
16
cells
11
human lacrimal
8
cultures human
8
growth factor
8
brdu label
8
label retention
8
colony forming
8
lacrimal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!