Laboratory hemostasis: from biology to the bench.

Clin Chem Lab Med

Department of Clinical and Laboratory Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research and Westmead Hospital, Westmead, NSW, Australia.

Published: June 2018

AI Article Synopsis

  • * The hemostatic process is divided into two main phases: primary hemostasis, which focuses on platelets and blood vessels, and secondary hemostasis, which involves coagulation factors and the coagulation cascade.
  • * Diagnosing disturbances in hemostasis requires a comprehensive approach that includes personal and family medical history, clinical signs, and laboratory testing, with an emphasis on starting with simpler, cost-effective screening tests before moving on to more detailed analyses.

Article Abstract

Physiological hemostasis is an intricate biological system, where procoagulant and anticoagulant forces interplay and preserves blood fluidity when blood vessels are intact, or trigger clot formation to prevent excessive bleeding when blood vessels are injured. The modern model of hemostasis is divided into two principal phases. The first, defined as primary hemostasis, involves the platelet-vessel interplay, whilst the second, defined as secondary hemostasis, mainly involves coagulation factors, damaged cells and platelet surfaces, where the so-called coagulation cascade rapidly develops. The activation and amplification of the coagulation cascade is finely modulated by the activity of several physiological inhibitors. Once bleeding has been efficiently stopped by blood clot formation, dissolution of the thrombus is essential to restore vessel permeability. This process, known as fibrinolysis, also develops through coordinate action of a vast array of proteins and enzymes. An accurate diagnosis of hemostasis disturbance entails a multifaceted approach, encompassing family and personal history of hemostatic disorders, accurate collection of clinical signs and symptoms, integrated with laboratory hemostasis testing. Regarding laboratory testing, a reasonable approach entails classifying hemostasis testing according to cost, complexity and available clinical information. Laboratory workout may hence initiate with some rapid and inexpensive "screening" tests, characterized by high negative predictive value, then followed by second- or third-line analyses, specifically aimed to clarify the nature and severity of bleeding or thrombotic phenotype. This article aims to provide a general overview of the hemostatic process, and to provide some general suggestions to optimally facilitate laboratory hemostasis testing.

Download full-text PDF

Source
http://dx.doi.org/10.1515/cclm-2017-1205DOI Listing

Publication Analysis

Top Keywords

laboratory hemostasis
12
hemostasis testing
12
hemostasis
8
blood vessels
8
clot formation
8
hemostasis involves
8
coagulation cascade
8
provide general
8
laboratory
5
hemostasis biology
4

Similar Publications

A Wet-Adhesion and Swelling-Resistant Hydrogel for Fast Hemostasis, Accelerated Tissue Injury Healing and Bioelectronics.

Adv Mater

December 2024

Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.

Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m, burst pressure of 514 mmHg, and swelling ratio of <4%).

View Article and Find Full Text PDF

Background: Hemophilia A is caused by coagulation factor VIII (FVIII) deficiency and increases bleeding risk during invasive procedures.

Objectives: To investigate FVIII concentrate use and bleeding outcomes for invasive procedures after valoctocogene roxaparvovec gene transfer.

Design: This manuscript presents post hoc analysis of the phase III GENEr8-1 trial.

View Article and Find Full Text PDF

Introduction: Diabetes Mellitus (DM) is a disorder of multiple etiologies characterized by chronic hyperglycemia resulting from defects in insulin secretion and/or insulin action. DM patients have a disturbance of hemostasis, leading to a prothrombotic state characterized by platelet hypersensitivity, coagulation factor disorders, and hypo-fibrinolysis. Therefore, the primary goal of this systematic review and meta-analysis was to determine the pooled Standard Mean Difference (SMD) of prothrombin time (PT) and activated partial thromboplastin time (APTT) of DM patients in Africa.

View Article and Find Full Text PDF

Platelet-derived biomaterials for targeted drug delivery and tissue repair.

J Mater Chem B

December 2024

College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.

Platelets are nucleic-free cells with a lifespan of 7-10 days in the bloodstream, playing a crucial role in various physiological processes such as hemostasis, thrombus formation, tumor development and metastasis, inflammation, and host defense. By utilizing the unique structural and functional characteristics of platelets, platelet-modified nano-drugs can evade immune recognition and clearance and facilitate prolonged circulation , which ultimately allows the nanoparticles to reach sites of disease such as thrombi, tumors, inflammation, or bacterial infections, leading to specific adhesion and significantly enhancing the efficiency of targeted drug delivery. This paper reviews the novel design and application of platelet-derived biomaterials in various diseases in recent years and comprehensively demonstrates the potential of platelet-derived biomaterials in the fields of disease therapy and biodefence, which will provide a reference for advancing the development of platelet-derived biomaterials and clinical practice.

View Article and Find Full Text PDF

DNA Methylation Pattern and mRNA Expression Level of E-Cadherin and P16 Genes in Thrombotic Disorders.

Clin Appl Thromb Hemost

December 2024

Department of Hematology and Transfusion sciences, School of Allied Medical Sciences, Tehran University of Medical sciences, Tehran, Iran.

Objective: DNA methylation, as an epigenetic alteration, plays an essential role in the development of atherosclerosis and venous thrombosis. E-cadherin, a tumor suppressor gene and adhesion molecule, has a crucial function in platelet aggregation and hemostasis. P16, a cell cycle regulator, is involved in venous thrombosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: